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Outline

Obstacles to better list decoding

Variance of polynomials method

Sum of squares method
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Last Talk

Robust List Decoding:

Given samples all but an α-fraction are errors

Return poly(1/α) hypotheses at least one of which is close

Error bounds:

Lower bound: Ω(
√

log(1/α))

Upper bound: Õ(
√

1/α)

Can we do better?
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Obstacle at α−1/2

Algorithm checked for directions of large variance. Unfortunately, this is
not enough to ensure error better than α−1/2.
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Idea

Bounds on the second moments are not enough to ensure concentration.

Fix: use higher moments.
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Analysis

If for all unit vectors v ,

E[|v · (X − µX )|2d ] = O(1),

then
1� α|v · (µ− µX )|2d ,

so
|µ− µX | = O(α−1/2d).
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Computational Difficulty

It is computationally intractable to determine whether or not there is a
unit vector v for which E[(v · X )2d ] is large when d > 1 [Hopkins-Li ’19].

Idea: Look at a relaxation of this problem.

1 Show that E[p(X )2] is not too large for every degree-d polynomial p
([Diakonikolas-Kane-Stewart ’18])

2 Use a Sum of Squares proof to show that E[(v · X )2d ] is small for
every unit vector v ([Hopkins-Li ’18],
[Kothari-Steinhardt-Steurer ’18])
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First Approach

Given a sample set S with sample mean µ̂ have two quadratic forms on
degree-d polynomials p:

p → E[p(S)2]

p → E[p(N (µ̂, I ))2]

Can detect whether there is some p much bigger on one than the other.
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Cases

If E[p(S)2]� E[p(N (µ̂, I ))2] for all p:

Take p(x) = (v · (x − µ̂))d

E[p(S)2]� α(v · (µ− µ̂))2d

Therefore |µ− µ̂| = O(α−1/2d)

If there is some p with E[p(S)2] much larger

p has larger empirical variance than it should

(Multi)filter based on the values of p
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Complication

If µ is unknown, so is Var(p(G )). This makes it difficult to filter points
based on the values of p

Highly technical fix, using several facts about Gaussian polynomials.
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Upshot

Theorem (Informal Statement)

Given (nd)O(d)poly(1/α) samples and (nd/α)O(d) time there is an
algorithm returning poly(1/α) hypotheses at least one of which is within
Od(α−1/2d) of µ.

With superconstant d can get polylog error in quasipolynomial
time/samples.
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Sum of Squares

How else might we try to show that our set has bounded central moments?

Sum of squares proofs: We can show that f ≥ 0 if we can write f as a
sum of squares of lower degree polynomials. There is a convex program to
determine if this is possible!

D, Kane (UCSD) High Degree June, 2019 12 / 19



Sum of Squares

How else might we try to show that our set has bounded central moments?

Sum of squares proofs: We can show that f ≥ 0 if we can write f as a
sum of squares of lower degree polynomials. There is a convex program to
determine if this is possible!

D, Kane (UCSD) High Degree June, 2019 12 / 19



Pseudoexpectations

Want to know if polynomial f is always non-negative.
I Find an x with f (x) small.
I Instead consider evaluation function g → g(x).
I Take convex relaxation.

See if there is a pseudoexpectation Ẽ : {degree-d polynomials} → R
so that:

I Ẽ[1] = 1
I Ẽ[p2] ≥ 0 for any p
I Ẽ[f ] as small as possible

Ẽ behaves like the expectation over solutions.

There is a convex program to find Ẽ.
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Idea

Need a distribution where the good samples have a SoS proof of bounded
central moments.

Try to find SoS proof of bounded central moments for sample set.
Either:

I Succeed. You have bounded central moments, so sample mean is good.
I Fail. Find a pseudoexpectation. Behaves like distribution over

directions with bad moments. Can use to construct (multi)filter.
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Comparison

The SoS technique gets results qualitatively similar to the other one but:

The use of convex programming likely means that it will be practically
slower.

Works for any distribution with a SoS proof of bounded central
moments (Gaussians, rotations of product distributions,. . . ).
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Other Applications of SoS

To get better than O(
√
ε) robust mean estimation, we generally need

both:

An accurate approximation to Cov(X )

Tail bounds

What if we only have the latter?
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Only Tail Bounds

Information-theoretically, tail bounds are enough.

Can estimate the mean in any direction by truncated mean.

Difficult to figure out which direction to filter in.

For Gaussians can do better: Approximate Cov(X ) using relation
between 2nd and 4th moments.
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SoS

Suppose that distribution had bounded d th central moments provable by
SoS. Filter by trying to find such a proof.

If it works, bounded moments implies small effect O(ε1−1/d) of errors
on mean

If not, pseudoexpectation gives “direction” to filter in

Can learn to error O(ε1−1/d) with just (provable) bounded moments.
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Conclusion

There are several instances were better errors in robust mean estimation
can be obtained by considering higher moments.
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