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Central Open Question

Can we efficiently cluster mixtures of

non-spherical log-concave distributions ?



Plan :

① Problem Setup

② Bottknecks

③ Recent Progress



Setup :

Let D be the uniform distribution over a convex body

ke R
"

with mean N and covariance I

Cloy-concave)

Ex . O Unit sphere

② Unit Cube

③ Simplex
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Definition : Mis "clusterable" if :jz[R]
D(Ni

,
[i) and D(Njc [j) are either

Q Mean - Separated

②Spectrally - separated

③ Shell/Frobenius - separated

- For Gaussians
,
this captures separation in total-varition distance

[B- Kothari 20
,

Diakonikolas - Hopkins-Kane-Karmalkar'20]

- Implies all known
*
notions of parameter separation

- Generalizes clustering spherical mixtures
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Setup :

Definition : M is "clusterable" if :je[R]
D(Ni
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Recap : Gaussian Mixtures

⑦ Hyper-contractivity of linear forms => Mean-Separated Clusting
[Kothari-Steinhardt 18, Hopkins -L: 18]

② Hyper-contractivity of deg-2 polynomials => Shell/Frobenius-Sep Clustering
[B .

- Kothavi'20
,
Diakonikolas-Hopkins-Kanz-Karmallzar'20]

③ Anti-concentration => Spectral-Sep Clustering
[B .
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,
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Recap : Gaussian Mixtures

⑦ Hyper-contractivity of linear forms
*

=> Mean-Separated Clusting
[Kothari-Steinhardt 18, Hopkins -L: 18]

② Hyper-contractivity of deg-2 polynomials
*

> Shell/Frobenius-Sep Clustering
[B .

- Kothavi'20
,
Diakonikolas-Hopkins-Kanz-Karmallzar'20]

③ Anti-concentration
*
=> Spectral-Sep Clustering

[B .

- Kothavi'20
,
Diakonikolas-Hopkins-Kanz-Karmallzar'20]

* SoS certifiable versions of these conditions imply efficient algorithms
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Beyond Gaussians :

Claim : Any log-concave distribution satisfies :

⑦ Hyper-contractivity of linear forms

② Hyper-contractivity of deg-2 polynomials
③ Anti-concentration

Proof Sketch :

↓ veIRd
,

the PDF is point-wise bounded by exp)
< x, v>c)

.

How do we get efficient algorithms?
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Analytic Certificates

Def /Certifiable Hycontractivity of linear forms] :

EveR"
,

<(v)" - E(x,v Sos(v)
·

-

varian(2 linear form

↳ apriori , a statement with infinite constraints

↳ admits a polynomial size representation
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Analytic Certificates imply Efficient Algorithms

KLS Conjecture

-
Certifiable Hypercontractivity < Mean Seperation

Poincare Kothari-Steinhardt of linear forms

&Inequality --- Certifiable HypercontractivityProg
of deg 2 polynomials

7 shell separation Clustering

Rotational
> Certifiable Anti-concentration / Spectral SeparationInvariance

Raghavendra- You

Karmalkar-Klivans-Kothari

B. - Kothari



Analytic Certificates imply Efficient Algorithms

KLS Conjecture
Certifiable Hypercontractivity < Mean Seperation

~ Tristent of linear forms
Inequality ...... Certifiable Hypercontractivity

Poincare

2000s
Prog

of deg 2 polynomials
> Shell separation& Clustering

Relaxing This

Rotational
Talk

> Certifiable Anti-concentration / Spectral Separation
Invariance

7 List-Decodable

Regression
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Certifiable Anti-Concentration : Beyond Gaussians

joint w/ Provesh Kothari , Gouthan Rajendran, MadhurTulsiani & Aravindan Vijayaraghavan

Def[Anti-concentration] : Given a distribution Dover IRd
f directions

and all intervals I of Length STEv , it

Pr[ < x , v> I] = 8,
&

X ~D S

then D is 8-anti-concentrated.
&

--
S V



Certifiable Anti-Concentration : Beyond Gaussians

Def[Anti-concentration] : Given n iid samples [XiYizans from a distribution D,

for all directions v in IRd ,
it d

Pr [xiv"- SIr] <8,
&

Xiv [XiJie[n]

than D is S-anti-concentrated .-
&

1 + V

Can we formulate this as an integer program ?
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Given [Xi Jizcn]
,

Def [Anti-concentration] : Given samples [XiYizany from a distribution D,

Dis S-anticoncentrated if for all directions v in IRd
,

Pr[Kiv> Sir] - S

max 12 1[ <XiVESizv]-

VEIR
d niE[n]

Claim : If OPT S
,

then the uniform distribution over Exifizens is

S- anticoncentrated
.
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Certifiable Anti-Concentration : Integer Program

Def [Anti-concentration] : Given samples [XiYizany from a distribution D,

Dis S-anticoncentrated if for all directions v in IRd
,

Given [Xi Jizcn]
, Pr[Kiv> Sir] - S

max I I Wi-

v ↳
n iE[n] s .t .

7

Vie [n] wi = Wi [Indicator variables]

VitEn] wi <xi ,VC < W:S . viIv (counting concentrated points]

How do we certify upper bounds on the objective value of this program ?
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Certifiable Anti-Concentration : EfficientCertificates
fitEn] we = Wi

A : = S
Vit[n] wi < xi

,
< S . rIv J

Key Idea : Derive an upper bound on
the objective

in the sum-of-squares proof system
=> Efficiently representable certificate

Claim : * findS-twi 3
OR

8 - - z wi = sos(v
,
w) + zqwi)Svzr-(xi , 25)2 :EEn] ↑

'E[n]
-
-

non-negative non-negative whenever constraints are
satisfied
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Certifiable Anti-Concentration : EfficientCertificates
fitEn] we = Wi

A : = S
fit [n] wi(xi

,
v S . vZv J

MainTheorem : Given n samples from a "reasonably anti-concentrated" distribution

there is a degree-Ologd) certificate of anti-concentration ,

i
.
e

.

A + (S - + z wi o
nie[n]

Ollogd)

① RunningTime : nOsblogd( (Casi-polynomial (

② S - Dependence : exp(/(*)"s) (Doubly - exponential)
③ No direct sum-of-squares proof



Certifiable Anti-Concentration : EfficientCertificates
Vie [n] wi = Wi

A : = S
fit [n] wi(xi

,
v S . vZv J

MainTheorem : Given n samples from a "reasonably anti-concentrated" distribution

there is a degree-Ologd) certificate of anti-concentration ,

i
.
e

.

A + (S - + z wi o
nie[n]

Ollogd)

⑦ Certificate works for affine transformations of uniform distributions over Lp
balls
,

anti-concentrated product distributions etc.

⑤ All prior certificates required rotational invariance.
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Certifiable Anti-Concentration : EfficientCertificates

MainTheorem : Given n samples from a "reasonably anti-concentrated" distribution

there is a degree-Ologd) certificate of anti-concentration ,

i
.
e

.

Applications :

1
. Clustering : A ngLloyd ( time (robust] algorithm for clustering
spectrally - separated components

-) A nOut(logd) time Crobust) algorithm for clustering mixtures .

2. List-Decodable Regression : A not ,<(logd) time algorithm for outputting
a list of size OII) e

.

t
. 118-Old * E

-
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Certifiable Anti-Concentration : Overview

Starting Point :
For uniform distributions over Lp balls , the marginals along

random directions are Gaussian-like
.

Lemma : If Iwlly" -> X-Irll
"

Y analytic density

2k
then < x

,
vc2 = (2) IVII X : R

*

1v1
X - D
- 2

*
k ! ~

2k-th moment along - dim-independent
Gaussian 22-thmoment

deviation

-> We provide an explicit sum-of-squares proof of this In the indeterminate v)
.



Certifiable Anti-Concentration : Overview

Starting Point :
For uniform distributions over Lp balls , the marginals along

random directions are Gaussian-like
.

Lemma : If Kvll
,

"
-
> X - Krll,

2k
then < x

,
vc2 = (2)! IVI X : R

*

1v1
X - D

2
*
k !

How do we handle the remaining directions?

↳ Do not admit a small cover ex : v= 1"2 , " , it "It



Certifiable Anti-Concentration : Overview

Lemma : If Kvll
,

"
-
> X - Krll,

2k
then < x

,
vc2 = (2)! IVI X : R

*

1v1
X - D

2
*
k !

How do we handle the remaining directions?

Lemma : Any direction v can be decomposed in V + V e .

t. Vy
has

· x non-zero coordinates and Vy is analytically dense i
.e.

11 Yy/EX1Vally"

Does not seem to help if v is an indeterminate .
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Certifiable Anti-Concentration : Overview

Lemma : Any direction v can be decomposed in V + V e .

t. Vy
has

Y non-zero coordinates and Vy is analytically dense i
.e .

① Switch to dual : 11 Yy/EX1Vulz

Fact : If I degt pseudo-distributions ↓ EP(x)0 ,

7 a sos prof of p(x), 0 .

② Assume for contradiction there is no such pseudo-distribution

③ Condition on "large" coordinates of r by "re-weighting
the pando-distribution

① The resulting rector is analytically densa and we can invoke the explicitproof

for analytically dense directions



Certifiable Anti-Concentration : Toy Application

& xi]i
z<n]

samples from M = D(0
,

2
, ) + 1 D(0 , 2) s .

t
.

Ev viziv Ev viz, v
1

.

2.
=) v at

. Er < 5vIv vTzv

(wlog. assume M is isotropic)



Certifiable Anti-Concentration : Toy Application

& xi]i
z<n]

samples from M = D(0
,

2
, ) + 1 D(0 , 2) s .

t
.

Ev viziv Ev viz, v
1

.

2.
=) v at

. Er < 5vIv vTzv

(wlog. assume M is isotropic)

A := Sis
c

2
wixi

,

vL2=wiSIVR

zwi = 1/2



Certifiable Anti-Concentration : Toy Application

& xi]i
z<n]

samples from M = D(0
,

2
, ) + 1 D(0, 2) s .

t
.

Ev viziv Ev viz, v
1

.

2.
J v st

. Er < 5vIv vTzv

(wlog. assume M is isotropic)

2

Vie (n] Wi = Wi

A : = S fit (n] wixi
,

vL2=wiSIVR

zwi = 1/2

Algorithm :

1 Compute a deg Oj(logd) Pseudo-distribution
2. Sample ge N60 , Evr)

3. Output g/lIgII.



Certifiable Anti-Concentration : Toy Application

& Xi]
,

samples from M = DO,+ D(0I .

2
-

Ev viziv Ev Vie (n] Wi = Wi
1

. A : =

2.
J v st

. Er < 5vIv S Vitcn] wixi
,

v=wiSIVR

zwi = 1/2

key SoSLemma :

A + [(z ,
v
+ 5 = 0(s) /v"]

Finishing
theProof :

<I ., Eris
?

- E(I
,
v( = 0(s)

Observe EggT = Ev and the claim follows from Markov's
.



Take
aways

:

KLS Conjecture
Certifiable Hypercontractivity < Mean Seperation

~ Tristent of linear formsPoincare

2000sInequality ...... Certifiable Hypercontractivity &Prog
of deg 2 polynomials

> Shell separation Clustering

Uniform over
This

↳ balls Talk
> Certifiable Anti-concentration / Spectral Separation

7 List-Decodable

Regression


