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Mean Estimation

* Input: n samples (Xq, ..., X;,) drawn from N (u*, 1) on R%.
* Goal: Learn u™.
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Robust Mean Estimation
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Robust Mean Estimation

e-Corruption:
=~ Q
\, (ﬁf:{; specifies M.

O O
’ & ::- o...
\ﬁ draws n samples from N (u*,1).

& replaces en samples with arbitrary points.

Goal: Learn u* given an €-corrupted set of n samples.
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Robust Mean Estimation: Prior Work

Algorithm Error Guarantee Poly-Time?
Coordinate-wise Median 0 (E\/E) Yes
Geometric Median 0, (E\/E) Yes
Tukey Median 0(€) No
Tournament 0(€) No
Pruning 0, (ex/a ) Yes
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Robust Mean Estimation: Prior Work

Algorithm Error Guarantee Runtime
[Lai+ ’10] O(e/logd)
Polynomial
[Diakonikolas+ *16]
O(e+/log(1/e =
[Dong Hopkins 1.i "19] ( \/ 8(1/€)) 0(nd)

These algorithms have near-optimal sample complexity.
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Motivation #1

Existing algorithms are fairly sophisticated (e.g., ellipsoid method,
iterative spectral methods, matrix multiplicative weight update) and
they are not parameter free.

Is it possible to solve robust estimation tasks

by standard first-order methods?
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Non-Convex Optimization

Extremely successtul in practice.
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Non-Convex Optimization

Extremely successtul in practice.
* In theory: NP-Hard.

* In practice: can be solved via (stochastic) gradient descent.

Why does non-convex optimization work?

* One possible explanation:

All local optima are globally optimal!

June 12, 2024
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Non-Convex Optimization

Discrete symmetry
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Non-Convex Optimization

All local optima are globally optimal!

Matrix factorization / Matrix completion.

Matrix sensing / Phase retrieval.

Eigenvector computation.

Tensor decomposition.

Dictionary learning,

Training neural networks.

June 12, 2024

12



Motivation #1, Revisited

Are all local optima globally optimal for
natural non-convex formulations of

robust estimation tasks?



Robust Gradient Descent

Robust meta-algorithms for stochastic optimization [Diakonikolas+ 19][Prasad+ *20].

* Unknown true distribution D of labelled data (X,Y).
* Input: (X1,Y71), (X2, Y2), ..., (Xp,, ¥p) where €-fraction is arbitrarily corrupted.
e Goal: min Z(Q) = ]E(ny),\,z) [L(H, X, Y)]

Example: Robust linear regression, X € R?andY € R

min X .L;(0) =X, (07X; —Y;)? under €-corruption.



Robust Gradient Descent

Robust meta-algorithms for stochastic optimization [Diakonikolas+ 19][Prasad+ *20].
Goal: min Z(H) = ]E(X,Y)ND [L (0, X, Y)] .

Input: min X;.,L;(0), e-fraction of the L; is corrupted.

Key idea:

* The gradients (VLi(H))i is an €-corrupted set of vectors with true mean VL(6).

* Can robustly estimate the true gradient VL(8).

* Can converge to a (local) optima of L(8) despite e-corruption.



Motivation #2

Can we design provably robust algorithms

for tractable non-convex problems?
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* New robust algorithms for tractable non-convex problems.

* New algo



Outline

e Robust Mean Estimation via Gradient Descent

* Robust Sparse Estimation via Gradient Descent

* Robust Second-Order Nonconvex Optimization

June 12, 2024
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Motivating Question

Can we solve robust mean estimation

using standard first-order methods?



Our Results [cpcs 20

* A natural non-convex formulation of robust mean estimation.

June 12, 2024
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Non-Convex Formulation

Hw = ZiWiXi and X, = Ziwi(Xi — :uw)(Xi - .uW)T

[Diakonikolas+ "16]:

If 2,, has small spectral norm, then u,, is close to the true mean.

min |[|Z,, = I|[; st wEA,,

Ane={wER": lw|; =1 and OSWis(l_;E)n}



Our Results [cpcs 20

* Any approximate stationary point of this non-convex objective

otves a near-optimal solution for mean estimation.

June 12, 2024
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Our Results [cpcs 20

min ||Z,, = Il st wWEA,,

Despite its non-convexity, we can show that any (approximate)

stationary point W yields a i, that is O(E\/ log(1/€))-close to u™.



No Bad Local Optima [cpceks22)

min  f(w) = [|Zy, — ]|

Let w* = uniform weight on the remaining good samples.

We prove that for any w with f(w) > €, moving W toward w”*

decreases the value of f.

June 12, 2024
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No Bad Local Optima [cpceks22)

min  f(w) = [|Z}y —Il]

Formally, for any 0 < n <1,
Y 1—pwtnqus = (1 =1)Zw +1nZwx +1(1 =) (B — ) (Hw

We show that the third term can essentially be ignored, so

f(1=nw+nw*) 5 (1 —n)f(w) +nf(w’) < f(w)

June 12, 2024
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No Bad Local Optima [cpceks22)

S—nwtnws = 1= 1)Zw + 18w + 71 = 1) (o — ) (Bo — fuwr) '

* Upper bounding the third term:

for any w € A, ¢, we have
2
10 = 13 < e (1B = 11l + O(2))

e Proof similar to structural lemma for robust mean estimation.



Another Proof jcpcs 201

W is a bad solution.

= v'Z,, v is much larger than it should be.

— We can find I and j such that
* it is feasible to increase W; and decrease w;.
* v'3,V becomes smaller after the change.

= W is not a first-order stationary point.



Another Proof jcpcs 201

V1%, v = variance in the direction v. .

CICADINE)
ow

the gradient of w for the 1-D problem

with input (X' v)?=1'
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Another Proof jcpcs 201

Simple case: i, = 0 and 2, has a unique top eigenvector V.

We have 2, = ZiWiXiXiT and v'Z,v =Y, w; ylfz where y; = Xl-Tv.

a(vTZwv) 2
awi o yi
O @ ® O 00 OO ® ¢ 00 O O

> cbad Wi Vi is very large = 3i st. w; > 0 and yf is large.
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Our Results [cpcs 20

* Gradient descent converges to an approximate stationary point in a

polynomial number of iterations.
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Algorithmic Results min 1S, stw € Ay,

IZ,, 1|, may not be differentiable w.r.t. w.

(v Tz,v)
ow

* Sub-gradient: use where v 1s any top eigenvector of 2.

* Softmax: minimize %tr exp(pZX,, ), which is differentiable.

We prove structural and algorithmic results for both

approaches.



Algorithmic Results

Sub-gradient Softmax

Start Wlth any WO S :}C — An,e-
FOft:OT_l FOf..-

Let v € argmax|,=1 V' ZyV.

asmax(Zw))
ow '

a(szwv)). Wey1 < Py (Wt —n

Wt+1‘_5D?C(Wt_77 P

end for end for
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Implementation

Projected Sub-gradient Descent

for itr = 1l:numltr
Sigma_w_fun = @(v) X' x (w . (X % v)) = (X' % w)™2 x v;
[u, lambdal] = eigs(Sigma_w_fun, d, 1);
nabla_f w = (X % u) .x (X *x u) =2 % (w'" x (X x u)) *x (X % u);
w=w — stepSize *x nabla_f_w / norm(nabla_f_w);
w = project_onto_capped_simplex(w, 1 / (N - epsN));
end

June 12, 2024
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Outline

e Robust Mean Estimation via Gradient Descent

* Robust Sparse Estimation via Gradient Descent

* Robust Second-Order Nonconvex Optimization

June 12, 2024
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Sparse Mean Estimation

* Input: n samples {X3, ..., X, } drawn from N (u, I) where
1 € R is unknown and k-sparse.

* Goal: Learn U.

Without sparsity: n = 0(d).
With sparsity: n = 0(k* log d).



Robust Sparse Mean and Sparse PCA

Robust sparse mean estimation:

* Input: An e-corrupted set of n samples drawn from N (i, I)

where i € R? is unknown and k-sparse.

* Goal: Learn L.

Robust sparse PCA (with spiked covariance):

* Input: An €-corrupted set of n samples drawn from N (0,1 + vv')

where v € R? is unknown and k-sparse.

e Goal: Learn v.



Motivating Question

Can we solve robust sparse estimation tasks

using standard first-order methods?



Our Results [cpccks?22

* We design new optimization formulations for robust sparse

mean estimation and robust sparse PCA.

* We show that any (approximate first-order) stationary point

provides a good solution for robust sparse estimation.

* Our algorithms work for a wider family of distributions.



Our Non-Convex Formulations [cpccks22]

min  f(w) = |12y, — IllFxk

Uy and 2, are the weighted empirical mean and covariance matrix.

|A||f k k is the maximum Frobenius norm of any k? entries of A, where

these entries are chosen from k rows with k entries in each row.

We prove that f has no bad first-order stationary points!
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Intuition for Choosing f(w) = (£, — Illpx

Structural result from [BDLS’17]: If the variance in all sparse directions
is close to 1, then the empirical mean 1s close to the true mean.

Our choice of f satisfies:

* f(w) = UT(ZW — v for all k-sparse unit vector V.

» v'3,V is the sample variance in direction v (weighted by w).
 We show that f(w) < 0(€) if w puts weight only on good samples.
These conditions imply the global optimum of f works.

We prove any local optimum of f suffices!



No Bad Local Optima (w/o Sparsity)

min  f(w) = [|Zy, — ]|

Formally, for any 0 < n <1,
S-nwtne = 1 =10 Zw + 78w + 01— 1) (tw — ) (Bo — fwr) '
The third term can essentially be ignored: it — o, ||? < 4e (IIEw — 1|, + 0(%))

SO

f(1=nw+nw*) 5 (1 —n)f(w) +nf(w’) < f(w)



No Bad Local Optima (w/ Sparsity)
min  f(W) = 12y — Illp

Formally, for any 0 < n < 1,
S -yt = (1= 1) Sw + 18w + (1 = 1) (tw — ) (Bw — Bor)

The third term can essentially be ignored: |t =t o = 1) < e (1% = Tl + O(8%/0))

Fkk —

f(1=nw+nw*) 5 (1 —n)f(w) +nf(w’) < f(w)

SO



Outline

e Robust Mean Estimation via Gradient Descent

* Robust Sparse Estimation via Gradient Descent

* Robust Second-Order Nonconvex Optimization

June 12, 2024
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Previous Work

Robust meta-algorithms for stochastic optimization [Diakonikolas+ 19][Prasad+ *20].
Goal: min Z(H) = ]E(X,Y)ND [L (0, X, Y)] .

Input: min X;.,L;(0), e-fraction of the L; is corrupted.

Key idea:

* The gradients (VLi(H))i is an €-corrupted set of vectors with true mean VL(6).

* Can robustly estimate the true gradient VL(8).

* Can converge to a (local) optima of L(8) despite e-corruption.



Motivating Question

* Prior works can robustly find First-Order Stationary Points
(FOSP).

* In many tractable non-convex problems, FOSPs may be bad
solutions, but Second-Order Stationary Points (SOSPs) are
guaranteed to be globally optimal.



Motivating Question

Can we develop a general framework for
finding second-order stationary points in

robust stochastic optimization?



Our Results [Lcopewn2s)

* We can robustly find SOSPs despite €-corruption.
* Robustly estimate the Hessian matrix

e Require O(d?) samples.

* As an application, we apply our framework to low-rank matrix
sensing, developing provably robust algorithms that can tolerate

corruptions in both the sensing matrices and the measurements.



Our Results [Lcopewn2s)

g = RobustMeanEstimation({Vf;(x,)}) such that ||g — VF(x,)|| < €g/3
H, = RobustMeanEstimation({V?f;(x,)}) such that || Hy — V2f(xk)||op <e€n/9

Algorithm 1: [LW23]

1Input: eg = O(0g+/€), ey = O(oy\/€), Initialization xp, Lipschitzness constants

2 Output: (2¢g, 2ey)-approximate SOSP

3 Runtime: O(l/eé, 1/6:;_/) iterations in expectation

afor k=12 ... do

5 | if ||gk|| > €g then

6 | Xyl =Xk — —Ll;gk ; // gradient step

7 | else if 5\,( := Amin(Hk) < —€y then
Pk <— unit minimum eigenvector of Hj
9 | | Draw o) < =£1 with probability %

10 | | Xg41 =Xk + %akﬁk : // negative curvature step

11  else
12 return x;
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Open Problems

* Other robust estimation tasks via optimization

e (Covariance estimation.

* Robust mean estimation via first-order optimization in nearly-linear time?

* Can we compute the gradient of (a smoothed version of)
fw) = ||2}, — Il|g x k. without writing down X, explicitly?

* Writing down X, takes d > nd time.



Open Problems

* Provably robust algorithms for other tractable non-convex

problems using tools in robust statistics.

* Robustly finding SOSP without robust Hessian estimation?

June 12, 2024
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