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Mean Estimation

𝜇⋆

• Input: 𝑛 samples (𝑋!, … , 𝑋") drawn from 𝒩(𝜇⋆, 𝐼) on ℝ$ .

•Goal: Learn 𝜇⋆.
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Robust Mean Estimation

𝜇⋆
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Robust Mean Estimation

𝜖-Corruption:

Goal: Learn 𝜇⋆ given an 𝜖-corrupted set of 𝑛 samples.

specifies 𝑛.

draws 𝑛 samples from 𝒩(𝜇⋆, 𝐼).

replaces 𝜖𝑛 samples with arbitrary points.
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Robust Mean Estimation: Prior Work

Algorithm Error Guarantee Poly-Time?

Coordinate-wise Median 𝑂(𝜖 𝑑) Yes

Geometric Median 𝑂(𝜖 𝑑) Yes
Tukey Median 𝑂(𝜖) No
Tournament 𝑂(𝜖) No

Pruning 𝑂(𝜖 𝑑) Yes
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Robust Mean Estimation: Prior Work

Algorithm Error Guarantee Runtime

[Lai+ ’16] 𝑂(𝜖 log 𝑑)
Polynomial

[Diakonikolas+ ’16]
𝑂(𝜖 log(1/𝜖))

[Dong Hopkins Li ’19] 0𝑂(𝑛𝑑)

These algorithms have near-optimal sample complexity.
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Motivation #1

Is it possible to solve robust estimation tasks 
by standard first-order methods?

Existing algorithms are fairly sophisticated (e.g., ellipsoid method,
iterative spectral methods, matrix multiplicative weight update) and
they are not parameter free.
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Non-Convex Optimization
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Extremely successful in practice.



Non-Convex Optimization
Extremely successful in practice.
• In theory: NP-Hard.
• In practice: can be solved via (stochastic) gradient descent.

Why does non-convex optimization work?
• One possible explanation: 

 All local optima are globally optimal!
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Non-Convex Optimization
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Non-Convex Optimization
All local optima are globally optimal!

• Matrix factorization / Matrix completion.
• Matrix sensing / Phase retrieval.

• Eigenvector computation.

• Tensor decomposition.

• Dictionary learning.

• Training neural networks.
• …
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Motivation #1, Revisited
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Is it possible to solve robust estimation 
tasks by standard first-order methods?

 

Are all local optima globally optimal for 
natural non-convex formulations of  

robust estimation tasks?



Robust Gradient Descent

Robust meta-algorithms for stochastic optimization [Diakonikolas+ ’19][Prasad+ ’20].

• Unknown true distribution 𝒟 of  labelled data (𝑋, 𝑌).
• Input: 𝑋", 𝑌" , 𝑋#, 𝑌# , … , (𝑋$ , 𝑌$) where 𝜖-fraction is arbitrarily corrupted.

• Goal:   min	 9𝐿 𝜃 ≔ 𝔼 %,' ∼𝒟 𝐿(𝜃, 𝑋, 𝑌) .

Example: Robust linear regression, 𝑋 ∈ ℝ*  and 𝑌 ∈ ℝ

min	 Σ+,"$ 𝐿+ 𝜃 = Σ+,"$ 𝜃-𝑋+ − 𝑌+ #   under 𝜖-corruption.
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Robust Gradient Descent
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Robust meta-algorithms for stochastic optimization [Diakonikolas+ ’19][Prasad+ ’20].

Goal:   min	 9𝐿 𝜃 ≔ 𝔼 %,' ∼𝒟 𝐿(𝜃, 𝑋, 𝑌) .

Input:   min	 Σ+,"$ 𝐿+ 𝜃 , 𝜖-fraction of  the 𝐿+ is corrupted.
 

Key idea:

• The gradients ∇𝐿+ 𝜃 + is an 𝜖-corrupted set of  vectors with true mean ∇9𝐿 𝜃 .

• Can robustly estimate the true gradient ∇9𝐿 𝜃 .

• Can converge to a (local) optima of  9𝐿 𝜃  despite 𝜖-corruption.



Motivation #2
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Can we design provably robust algorithms 
for tractable non-convex problems?



A Tale of Two Research Areas

•New algorithms for robust statistics via optimization
•New robust algorithms for tractable non-convex problems.
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Outline

• Robust Mean Estimation via Gradient Descent

• Robust Sparse Estimation via Gradient Descent

• Robust Second-Order Nonconvex Optimization
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Motivating Question

Can we solve robust mean estimation 
using standard first-order methods?
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Our Results [CDGS ’20]

• A natural non-convex formulation of  robust mean estimation.

• Any approximate stationary point of this non-convex objective
gives a near-optimal solution for mean estimation.

• Gradient descent converges to an approximate stationary point in a
polynomial number of iterations.
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Non-Convex Formulation

𝜇. = ∑+𝑤+𝑋+ and Σ. = ∑+𝑤+ 𝑋+ − 𝜇. 𝑋+ − 𝜇. -

[Diakonikolas+ ’16]:

If Σ. has small spectral norm, then 𝜇. is close to the true mean.

min   Σ% − 𝐼 &      s.t.   𝑤 ∈ Δ",(

Δ",$ = {𝑤 ∈ ℝ" ∶ 𝑤 % = 1 and 0 ≤ 𝑤& ≤ %
%'$ " }

June 12, 2024 21



Our Results [CDGS ’20]

• A natural non-convex formulation of  robust mean estimation.

• Any approximate stationary point of this non-convex objective
gives a near-optimal solution for mean estimation.

• Gradient descent converges to an approximate stationary point in a
polynomial number of iterations.
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Our Results [CDGS ’20]

min   Σ% − 𝐼 &      s.t.   𝑤 ∈ Δ",(

Despite its non-convexity, we can show that any (approximate)
stationary point 𝑤 yields a 𝜇! that is 𝑂(𝜖 log(1/𝜖))-close to 𝜇⋆.
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No Bad Local Optima [CDGGKS'22]

min 𝑓 𝑤 = 𝛴% − 𝐼 &

Let 𝑤⋆ = uniform weight on the remaining good samples.

We prove that for any 𝑤 with 𝑓 𝑤 ≫ 𝜖, moving 𝑤 toward 𝑤⋆

decreases the value of 𝑓.
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No Bad Local Optima [CDGGKS'22]

min 𝑓 𝑤 = 𝛴% − 𝐼 &

Formally, for any 0 < 𝜂 < 1,

We show that the third term can essentially be ignored, so
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No Bad Local Optima [CDGGKS'22]

• Upper bounding the third term:

• Proof  similar to structural lemma for robust mean estimation.

June 12, 2024 26



Another Proof [CDGS ’20]

𝑤 is a bad solution.

Þ 𝑣#Σ!𝑣 is much larger than it should be. 

Þ We can find 𝑖 and 𝑗 such that

• it is feasible to increase 𝑤$ and decrease 𝑤% .

• 𝑣#Σ!𝑣 becomes smaller after the change.

Þ 𝑤 is not a first-order stationary point.
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Another Proof [CDGS ’20]

𝑣)Σ%𝑣 = variance in the direction 𝑣.

*(,!-",)
*%

= the gradient of 𝑤 for the 1-D problem

                     with input 𝑋/)𝑣 /0!
"

.
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Another Proof [CDGS ’20]

Simple case: 𝜇. = 0 and Σ. has a unique top eigenvector 𝑣.

We have Σ. = ∑+𝑤+𝑋+𝑋+- and 𝑣-Σ.𝑣 = ∑+𝑤+ 𝑦+# where 𝑦+ = 𝑋+-𝑣.

  /(1!2"1)
/.#

= 𝑦+#

∑+∈567𝑤+ 𝑦+# is very large ⟹ ∃𝑖 s.t. 𝑤+ > 0 and 𝑦+#	is large.
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Our Results [CDGS ’20]

• A natural non-convex formulation of  robust mean estimation.

• Any approximate stationary point of this non-convex objective
gives a near-optimal solution for mean estimation.

• Gradient descent converges to an approximate stationary point in a
polynomial number of iterations.

June 12, 2024 30



Algorithmic Results

Σ% & may not be differentiable w.r.t. 𝑤.

• Sub-gradient: use /(1!2"1)
/.

where 𝑣 is any top eigenvector of Σ. .

• Softmax: minimize $
% tr exp 𝜌Σ. , which is differentiable.

We prove structural and algorithmic results for both
approaches.

min Σ( ) s.t. 𝑤 ∈ Δ",$
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Algorithmic Results

Start with any 𝑤8 ∈ 𝒦 = Δ$,9 .
For 𝑡 = 0… 𝑇 − 1
 Let 𝑣 ∈ argmax 1 &," 𝑣

-Σ.𝑣.

 𝑤:;" ← 𝒫𝒦 𝑤: − 𝜂
/(1!2"1)

/.
.

end for

…
For …

𝑤:;" ← 𝒫𝒦 𝑤: − 𝜂
/=>?@(2")

/.
.

end for

Sub-gradient Softmax
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Implementation

Projected Sub-gradient Descent
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Outline

• Robust Mean Estimation via Gradient Descent

• Robust Sparse Estimation via Gradient Descent

• Robust Second-Order Nonconvex Optimization
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𝜇

• Input: 𝑛 samples {𝑋!, … , 𝑋"} drawn from 𝒩(𝜇, 𝐼) where
 𝜇 ∈ ℝ$ is unknown and 𝑘-sparse.

•Goal: Learn 𝜇.

Without sparsity: 𝑛 ≈ 𝑂(𝑑).
With sparsity: 𝑛 ≈ 𝑂(𝑘& log 𝑑).
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Robust sparse mean estimation:
• Input: An 𝜖-corrupted set of 𝑛 samples drawn from 𝒩(𝜇, 𝐼) 

  where 𝜇 ∈ ℝ* is unknown and 𝑘-sparse.
• Goal: Learn 𝜇.

Robust sparse PCA (with spiked covariance):
• Input: An 𝜖-corrupted set of 𝑛 samples drawn from 𝒩(0, 𝐼 + 𝑣𝑣-) 

 where 𝑣 ∈ ℝ* is unknown and 𝑘-sparse.
• Goal: Learn 𝑣.
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Robust Sparse Mean and Sparse PCA



Motivating Question

Can we solve robust sparse estimation tasks 
using standard first-order methods?
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Our Results [CDGGKS'22]

•We design new optimization formulations for robust sparse
mean estimation and robust sparse PCA.

•We show that any (approximate first-order) stationary point
provides a good solution for robust sparse estimation.

•Our algorithms work for a wider family of distributions.

June 12, 2024 38



Our Non-Convex Formulations [CDGGKS'22]
min 𝑓 𝑤 = 𝛴% − 𝐼 1,2,2

𝜇. and Σ. are the weighted empirical mean and covariance matrix.

𝐴 A,B,B is the maximum Frobenius norm of any 𝑘# entries of 𝐴, where
these entries are chosen from 𝑘 rows with 𝑘 entries in each row.

We prove that 𝑓 has no bad first-order stationary points!

June 12, 2024 39



Intuition for Choosing 𝑓 𝑤 = 𝛴% − 𝐼 1,2,2

Structural result from [BDLS’17]: If the variance in all sparse directions
is close to 1, then the empirical mean is close to the true mean.

Our choice of 𝑓 satisfies:
• 𝑓(𝑤) ≥ 𝑣-(Σ. − 𝐼)𝑣 for all 𝑘-sparse unit vector 𝑣.
• 𝑣*Σ(𝑣 is the sample variance in direction 𝑣 (weighted by 𝑤).

• We show that 𝑓 𝑤 ≤ 0𝑂(𝜖) if 𝑤 puts weight only on good samples.
These conditions imply the global optimum of 𝑓 works.
We prove any local optimum of 𝑓 suffices!
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No Bad Local Optima (w/o Sparsity)
min 𝑓 𝑤 = 𝛴% − 𝐼 &

Formally, for any 0 < 𝜂 < 1,

The third term can essentially be ignored:
so
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No Bad Local Optima (w/ Sparsity)
min 𝑓 𝑤 = 𝛴% − 𝐼 1,2,2

Formally, for any 0 < 𝜂 < 1,

The third term can essentially be ignored:
so

June 12, 2024 42



Outline

• Robust Mean Estimation via Gradient Descent

• Robust Sparse Estimation via Gradient Descent

• Robust Second-Order Nonconvex Optimization
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Previous Work
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Robust meta-algorithms for stochastic optimization [Diakonikolas+ ’19][Prasad+ ’20].

Goal:   min	 9𝐿 𝜃 ≔ 𝔼 %,' ∼𝒟 𝐿(𝜃, 𝑋, 𝑌) .

Input:   min	 Σ+,"$ 𝐿+ 𝜃 , 𝜖-fraction of  the 𝐿+ is corrupted.
 

Key idea:

• The gradients ∇𝐿+ 𝜃 + is an 𝜖-corrupted set of  vectors with true mean ∇9𝐿 𝜃 .

• Can robustly estimate the true gradient ∇9𝐿 𝜃 .

• Can converge to a (local) optima of  9𝐿 𝜃  despite 𝜖-corruption.



Motivating Question

• Prior works can robustly find First-Order Stationary Points 
(FOSP).

• In many tractable non-convex problems, FOSPs may be bad 
solutions, but Second-Order Stationary Points (SOSPs) are 
guaranteed to be globally optimal.
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Motivating Question
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Can we develop a general framework for 
finding second-order stationary points in 

robust stochastic optimization?



Our Results [LCDDGW'23]

• We can robustly find SOSPs despite 𝜖-corruption.
• Robustly estimate the Hessian matrix
• Require 0𝑂(𝑑#) samples.

• As an application, we apply our framework to low-rank matrix 
sensing, developing provably robust algorithms that can tolerate 
corruptions in both the sensing matrices and the measurements.
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Our Results [LCDDGW'23]
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Open Problems

• Other robust estimation tasks via optimization
• Covariance estimation.
• …

• Robust mean estimation via first-order optimization in nearly-linear time?

• Can we compute the gradient of (a smoothed version of)
𝑓 𝑤 = 𝛴. − 𝐼 A,B,B without writing down 𝛴. explicitly?
• Writing down 𝛴( takes 𝑑) ≫ 𝑛𝑑 time.
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Open Problems

• Provably robust algorithms for other tractable non-convex 
problems using tools in robust statistics.

• Robustly finding SOSP without robust Hessian estimation?
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Thank You!
Q&A
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