Information-Computation Tradeoffs
via NGCA

llias Diakonikolas (UW Madison)
TTIC, June 2024



Can we develop learning algorithms that are robust to
a constant fraction of corruptions in the data?




THE STATISTICAL LEARNING PROBLEM

Unknown
0* samples

>

« Input. sample generated by a statistical model with unknown 6*
* (Goal. estimate parameters 0 so that 0 ~ 6*

. . . . . Main performance criteria:
. ?
Question 1: Is there an efficient learning algorithm? . Sample size

* Running time
Robustness

Question 2: Are there tradeoffs between these criteria?




(OUTLIER-) ROBUSTNESS

(&

Strong Contamination Model:

Let 7 be a family of statistical models.

We say that a set of N samples is e -corrupted from F if

it is generated as follows:

» N samples are drawn from an unknown F' € F

« An omniscient adversary inspects these samples and
changes arbitrarily an e-fraction of them.

/

cf. Huber’s contamination model [1964]



OBSERVED INFORMATION-COMPUTATION (IC) GAPS

Problem 1: Robust Mean Estimation for A'(u, I) in strong contamination model
- Information-theoretic: O(e)

- Computational: O(e4/log(1/€)) [D-Kane-Kamath-Li-Moitra-Stewart’16]
Problem 2: Robust Sparse Mean Estimation for N (u, I) in Huber’s model

- Information-theoretic: O(k log(d)/€?)

- Computational: O(k? log(d)/€?) [Li'17]

Problem 3: Robust covariance estimation for N'(0, X) in spectral norm
- Information-theoretic: O(d)
- Computational: Q(d?) [D-Kane-Kamath-Li-Moitra-Stewart’16]

Are these observed information-computation gaps inherent?



How Do WE PROVE IC TRADEOFFS?

« Unconditional hardness beyond reach. Need some assumptions.

 Reduction-based hardness
Efficient reduction from known “hard” problem
General theory lacking for statistical problems

» Restricted Models of Computation
Statistical Query (SQ) Model
Low-degree Polynomial Tests
Sum-of-Squares Algorithms

This talk: SQ Model



STATISTICAL QUERY (SQ) MODEL [KEARNS'93]
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Statistical Query: Q; : X — [—1,1]

Complexity measures
 Number of queries: ¢
« Query tolerance: T

tolerance of
STAT p(7) returns a; :  the query
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Runtime
Sample complexity



POWER OF SQ ALGORITHMS

Restricted Model: Can prove unconditional lower bounds.

» Powerful Model: Wide range of algorithmic techniques in ML are implementable using SQs:
- PAC Learning: AC?, decision trees, linear separators, boosting
- Unsupervised Learning: stochastic convex optimization, moment-based methods,
k-means clustering, EM, ... [Feldman-Grigorescu-Reyzin-Vempala-Xiao, JACM17]

« Exceptions: Gaussian elimination, lattice basis-reduction [D-Kane’22, Zadik-Song-\Wein-
Bruna’22]

« SQ Model =~ Low-degree Polynomial Tests [Brennan-Bresler-Hopkins-Li-Schramm’21]



INTERPRETATION OF SQ LOWER BOUNDS

Suppose we have proved:

Any SQ algorithm for problem P
» either requires queries of tolerance at most 7

« or makes at least g queries.

Then we can interpret:

| Any SQ algorithm* for problem P !

: - either requires at least 1/72 samples

1 orhas runtime at least g.



SQ LOWER BOUND FOR ROBUST MEAN ESTIMATION

e N
Theorem: Any SQ algorithm that learns an € - corrupted Gaussian N (i, I) in the strong

contamination model within error
o(ey/log(1/e))

requires either:
« SQ queries of accuracy d—«(1)
or

. atleast d*") many SQ queries.
o %

Take-away: Any asymptotic improvement in error guarantee over filtering algorithm requires super-
polynomial time.



SQ LOWER BOUND FOR ROBUST SPARSE MEAN ESTIMATION
4 N
Theorem: Any SQ algorithm that learns an € - corrupted Gaussian N (i, I) where is
k-sparse within constant error requires either:

« Q(k?) samples

or

. atleast d*"’many SQ queries.

A /

Minimax sample complexity is ©(k log(d/k)/€?)

Take-away: Any asymptotic improvement in error guarantee over known efficient algorithms [Li’17,
DKKPS’19,...] requires super-polynomial time.



SQ LOWER BOUND FOR LEARNING GMMSs

e N
Theorem: Any SQ algorithm that learns GMMs on R¢ to constant total variation error requires
either:

o d*¥®) samples
or
. atleast 27" many SQ queries.

even if the components are pairwise separated in total variation distance.
- /

Minimax sample complexity is poly(d, k)

Take-away: Computational complexity of learning separated GMMs is inherently exponential in
number of components.



NON-GAUSSIAN COMPONENT ANALYSIS (NGCA)

Given samples from a distribution on R¢, find a hidden “non-Gaussian” direction.

* Introduced in [Blanchard-Kawanabe-Sugiyama-Spokoiny-Muller’06].

« Studied extensively from algorithmic standpoint.

[ Kawanabe-Theis’06; Kawanabe-Sugiyama-Blanchard-Muller’07;
Diederichs-Juditsky-Spokoiny-Schutte’10; Diederichs-Juditsky-Nemirovski-Spokoiny’13;
Bean’14; Sasaki-Niu-Sugiyama’16; Virta-Nordhausen-0ja’16;

Vempala-Xiao’'11; Tan-Vershynin'18; Goyal-Shetty’19]



NON-GAUSSIAN COMPONENT ANALYSIS (NGCA): DEFINITION

Definition: Let v be a unit vectorin R?and A : R — R be a pdf. We define Pf to be the
distribution with v - projection equal to A and vt projection an independent standard Gaussian.

NGCA Problem: Given A that matches the first m moments with A'(0,1):
Using i.i.d. samples from P} where v is unknown, find the hidden direction v.

Generalizations: multi-dimensional, sparse, supervised, approximate moment-matching




NGCA captures interesting instances of several (robust) learning tasks



Learning Gaussian Mixtures [D-Kane-Stewart’17, D-Kane-Pittas-Zarifis’23, D-Karmalkar-Pang-
Potechin’24]

Robust mean and covariance estimation [D-Kane-Stewart’17]

Robust sparse mean estimation, sparse PCA [D-Kane-Stewart’17, D-Stewart’18]

Robust linear regression [D-Kong-Stewart’19]

List-decodable learning [D-Kane-Stewart’'18, D-Kane-Pensia-Pittas-Stewart’21]

Adversarially robust PAC learning [Bubeck-Price-Razenshteyn’18]

Agnostic Learning [Goel-Gollakota-Klivans'20, D-Kane-Zarifis’20, D-Kane-Pittas-Zarifis’21]

Learning LTFs with (Semi)-random Noise [D-Kane'20, Nasser-Tiegal’22, D-J.D.-Kane-\Wang-Zarifis’23]
Learning (Very Simple) NNs and Generative Models [D-Kane-Kontonis-Zarifis’20 Chen-Li-Li'22, Song’24]
Learning Mixtures of LTFs [D-Kane-Sun’23]

Learning Intersections of Halfspaces [Tiegel'24]

Truncated statistics [D-Kane-Pittas-Zarifis'24]



INFORMAL LOWER BOUND RESULT

Fact: Non-Gaussian Component Analysis
« Can be solved with poly(d, m) samples.
- All known efficient algorithms require at least ¢}(™) samples (and time).

Informal Theorem: For any “nice” univariate distribution A matching its first m moments with|
the standard Gaussian, any* algorithm that solves NGCA

. either draws at least d**("™) samples
Q(1
. or has runtime 24"

*holds for any Statistical Query (SQ) algorithm

[D-Kane-Stewart, FOCS'17; ...; D-Kane-Ren-Sun, NeurlPS’'23]



GENERAL METHODOLOGY FOR SQ LOWER BOUNDS

Hypothesis Testing Problem: Given access to a distribution D on R% with promise that
« eitherD = Dy

« or D is selected randomly from D = {D,, }.,,cs according to prior

the goal is to distinguish between the two cases.

Pairwise correlation: Xp,(p,q) = Ez~p,[(p/Do)(z)(q/Do)(x)] — 1

Theorem [FGRVX'17]: Suppose there exists a “large” set of distributions in D with “small”
pairwise correlation with respect to Dy . Then any SQ algorithm for hypothesis testing task:

 either requires at least one “high-accuracy” query
« orrequires a "large” number of queries.




STATISTICAL QUERY HARDNESS OF NGCA

Testing Version of NGCA: Given access to a distribution D on R? with the promise that
. either D =N (0,1)

e or D= P,;j1 , where v is a uniformly random unit vector

the goal is to distinguish between the two cases.

Main Theorem [D-Kane-Stewart'17]

Suppose that 4 matches its first m moments with A’(0, 1) and x*(A4, N (0,1)) < oo.
Any SQ algorithm for the testing version of NGCA:

- either requires a query of tolerance at most d=(™) y2(A, N'(0,1))
* orrequires at least 9d?) many queries.

1/2




INTUITION: WHY IS NGCA “HARD”?

Claim 1: Low-degree moments do not help.

+ Degree at most m moment tensor of P2 identical to that of A(0, 1)

Claim 2: Random projections do not help.

Distinguishing requires exponentially many random projections.




KEY LEMMA: RANDOM PROJECTIONS ARE ALMOST GAUSSIAN

Key Lemma: Let O be the distribution of v/ - X, where X ~ Pf. Then, we have that:
X*(Q, N(0,1)) < (v-v")*™Hx2(A4,N(0,1))

Q = Up(4)

Ornstein-Uhlenbeck
operator




SQ LOWER BOUND: PROOF OVERVIEW

Want exponentially many P,,‘j‘ s that are nearly uncorrelated.

* Pick set V of near-orthogonal unit vectors. Can get |V| = 9d""

« Have
X 0,1)(Po, Po) = xav0,1) (A4, UgA) < | cos™1(6)[x* (A, N(0,1))



RECIPE FOR SQ HARDNESS RESULTS

Main Theorem [D-Kane-Stewart'17]

Suppose that 4 matches its first  moments with A’(0, 1) and x*(4,N(0,1)) < oo.
Any SQ algorithm for the testing version of NGCA:

- either requires a query of tolerance at most d=("™) x2(A, N'(0,1))'/?

* orrequires at least 9d?) many queries.

Recipe. Encode Il as a NGCA instance:

- Construct moment-matching distribution A such that P2 is a valid instance of IT .

« Match as many low-degree moments as possible.




MOMENT-MATCHING FOR ROBUST MEAN ESTIMATION

Lemma: There exists a univariate distribution 4 such that:
- A4 agrees with A/(0, 1) on the first m moments

. A satisfies drv (4, N(5,1)) < O(6m2/+/1og(1/9))

Proof Idea:
« Take C = O(y/log(1/9))
* Define

[G(z—0), z ¢ [-C,C]
Ale) = {G(:z: —6) +p(z), = € [-C,C]

where p is degree-m moment-matching polynomial.




MOMENT-MATCHING FOR LEARNING GMMS

Lemma: There exists a univariate ~~-GMM A with nearly non-overlapping components such that:
A agrees with V'(0, 1) on the first 2k-1 moments.

Proof Idea:

« Construct discrete distribution B with support £ matching its first
2k-1 moments with V' (0,1).

» Rescale B and add a “skinny” Gaussian to get A4.




SQ HARD INSTANCES FOR GMMSs: PARALLEL PANCAKES
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SQ HARDNESS FOR WIDE RANGE OF PROBLEMS

NGCA captures SQ hard instances of several well-studied learning tasks

Learning Gaussian Mixtures [D-Kane-Stewart’17, D-Kane-Pittas-Zarifis’23, D-Karmalkar-Pang-Potechin’24]
Robust mean and covariance estimation [D-Kane-Stewart’17]

Robust sparse mean estimation, sparse PCA [D-Kane-Stewart’ 17, D-Stewart’18]

Robust linear regression [D-Kong-Stewart'19]

List-decodable learning [D-Kane-Stewart' 18, D-Kane-Pensia-Pittas-Stewart’21]

Adversarially robust PAC learning [Bubeck-Price-Razenshteyn’18]

Agnostic Learning [Goel-Gollakota-Klivans'20, D-Kane-Zarifis’20, D-Kane-Pittas-Zarifis'21]

Learning LTFs with (Semi)-random Noise [D-Kane’'20, Nasser-Tiegal’22, D-J.D.-Kane-Wang-Zarifis'23]
Learning (Very Simple) NNs and Generative Models [D-Kane-Kontonis-Zarifis’20 Chen-Li-Li'22, Song'24]
Learning Mixtures of LTFs [D-Kane-Sun’23]

Learning Intersections of Halfspaces [Tiegel'24]

Truncated statistics [D-Kane-Pittas-Zarifis’24]



OPEN PROBLEMS

NGCA leads to wide range of hardness results in SQ model

Open Problem 1: Alternative evidence of hardness?

Already known for special cases (reductions):
¢ Robust sparse mean estimation [Brennan-Bresler’20]
s Learning GMMs [Bruna-Regev-Song-Tang'21]
s Learning with Semi-random Noise [D-Kane-Panurangsi-
Ren’22, D-Kane-Ren’'23]

Open Problem 2: How general is this phenomenon?

Open Problem 3: Prove SoS lower bounds for NGCA.

SQ hard instances are
computationally hard



