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Can we develop learning algorithms that are robust to 
a constant fraction of corruptions in the data?



THE STATISTICAL LEARNING PROBLEM

• Input: sample generated by a statistical model with unknown
• Goal: estimate parameters    so that  

Question 1: Is there an efficient learning algorithm?

Unknown 
θ* samples ✓

✓⇤

✓ ✓ ⇡ ✓⇤

Main performance criteria:
• Sample size
• Running time

Question 2: Are there tradeoffs between these criteria?

• Robustness



(OUTLIER-) ROBUSTNESS

Strong Contamination Model:
Let     be a family of statistical models.
We say that a set of N samples is -corrupted from     if 
it is generated as follows: 
• N samples are drawn from an unknown
• An omniscient adversary inspects these samples and 

changes arbitrarily an   -fraction of them.
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cf. Huber’s contamination model [1964]



OBSERVED INFORMATION-COMPUTATION (IC) GAPS

Problem 1: Robust Mean Estimation for              in strong contamination model

- Information-theoretic:
- Computational:                           [D-Kane-Kamath-Li-Moitra-Stewart’16]  

Problem 2: Robust Sparse Mean Estimation for              in Huber’s model

- Information-theoretic:
- Computational:                           [Li’17]                       

Problem 3: Robust covariance estimation for              in spectral norm
- Information-theoretic:
- Computational:            [D-Kane-Kamath-Li-Moitra-Stewart’16] 

Are these observed information-computation gaps inherent?



HOW DO WE PROVE IC TRADEOFFS? 

• Unconditional hardness beyond reach. Need some assumptions.

• Reduction-based hardness
Efficient reduction from known “hard” problem
General theory lacking for statistical problems 

• Restricted Models of Computation
Statistical Query (SQ) Model
Low-degree Polynomial Tests
Sum-of-Squares Algorithms

This talk: SQ Model



STATISTICAL QUERY (SQ) MODEL [KEARNS’93] 

Unrestricted algorithm

SQ algorithm

Q2

Qq

......

Statistical Query:

returns      :
tolerance of 
the query

Complexity measures
• Number of queries: 
• Query tolerance: 

Runtime
Sample complexity



POWER OF SQ ALGORITHMS

• Restricted Model: Can prove unconditional lower bounds.

• Powerful Model: Wide range of algorithmic techniques in ML are implementable using SQs:
- PAC Learning: AC0, decision trees, linear separators, boosting
- Unsupervised Learning: stochastic convex optimization, moment-based methods, 
k-means clustering, EM, … [Feldman-Grigorescu-Reyzin-Vempala-Xiao, JACM’17]

• Exceptions: Gaussian elimination, lattice basis-reduction [D-Kane’22, Zadik-Song-Wein-
Bruna’22]

• SQ Model     Low-degree Polynomial Tests [Brennan-Bresler-Hopkins-Li-Schramm’21]



INTERPRETATION OF SQ LOWER BOUNDS

Suppose we have proved:

Any SQ algorithm for problem P
• either requires queries of tolerance at most    
• or makes at least q queries.

Then we can interpret:

Any SQ algorithm* for problem P
• either requires at least           samples
• or has runtime at least q.



SQ LOWER BOUND FOR ROBUST MEAN ESTIMATION

Theorem: Any SQ algorithm that learns an    - corrupted Gaussian              in the strong 
contamination model within error

requires either:
• SQ queries of accuracy 
or
• at least           many SQ queries.

o(✏
p
log(1/✏))

Take-away: Any asymptotic improvement in error guarantee over filtering algorithm requires super-
polynomial time.
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SQ LOWER BOUND FOR ROBUST SPARSE MEAN ESTIMATION

Theorem: Any SQ algorithm that learns an    - corrupted Gaussian              where is 
k-sparse within constant error requires either:
• samples 
or
• at least           many SQ queries.

Take-away: Any asymptotic improvement in error guarantee over known efficient algorithms [Li’17, 
DKKPS’19,…] requires super-polynomial time.

Minimax sample complexity is 



SQ LOWER BOUND FOR LEARNING GMMS

Theorem: Any SQ algorithm that learns GMMs on      to constant total variation error requires 
either:
• samples 
or
• at least           many SQ queries.

even if the components are pairwise separated in total variation distance.

Take-away: Computational complexity of learning separated GMMs is inherently exponential in 
number of components.

Minimax sample complexity is 



NON-GAUSSIAN COMPONENT ANALYSIS (NGCA)

Given samples from a distribution on      , find a hidden “non-Gaussian” direction.

• Introduced in [Blanchard-Kawanabe-Sugiyama-Spokoiny-Muller’06].

• Studied extensively from algorithmic standpoint.
[ Kawanabe-Theis’06; Kawanabe-Sugiyama-Blanchard-Muller’07; 
Diederichs-Juditsky-Spokoiny-Schutte’10; Diederichs-Juditsky-Nemirovski-Spokoiny’13; 
Bean’14; Sasaki-Niu-Sugiyama’16; Virta-Nordhausen-Oja’16; 
Vempala-Xiao’11; Tan-Vershynin’18; Goyal-Shetty’19]



NON-GAUSSIAN COMPONENT ANALYSIS (NGCA): DEFINITION

Definition: Let     be a unit vector in       and                       be a pdf. We define        to be the 
distribution with    - projection equal to     and       - projection an independent standard Gaussian.

NGCA Problem: Given     that matches the first      moments with              :
Using i.i.d. samples from         where    is unknown, find the hidden direction    .

Generalizations: multi-dimensional, sparse, supervised, approximate moment-matching



NGCA captures interesting instances of several (robust) learning tasks



• Learning Gaussian Mixtures [D-Kane-Stewart’17, D-Kane-Pittas-Zarifis’23, D-Karmalkar-Pang-
Potechin’24]

• Robust mean and covariance estimation [D-Kane-Stewart’17]
• Robust sparse mean estimation, sparse PCA [D-Kane-Stewart’17, D-Stewart’18]
• Robust linear regression [D-Kong-Stewart’19]
• List-decodable learning [D-Kane-Stewart’18, D-Kane-Pensia-Pittas-Stewart’21]
• Adversarially robust PAC learning [Bubeck-Price-Razenshteyn’18]
• Agnostic Learning [Goel-Gollakota-Klivans’20, D-Kane-Zarifis’20, D-Kane-Pittas-Zarifis’21]
• Learning LTFs with (Semi)-random Noise [D-Kane’20, Nasser-Tiegal’22, D-J.D.-Kane-Wang-Zarifis’23]
• Learning (Very Simple) NNs and Generative Models [D-Kane-Kontonis-Zarifis’20 Chen-Li-Li’22, Song’24]
• Learning Mixtures of LTFs [D-Kane-Sun’23]
• Learning Intersections of Halfspaces [Tiegel’24]
• Truncated statistics [D-Kane-Pittas-Zarifis’24]
• …



INFORMAL LOWER BOUND RESULT

*holds for any Statistical Query (SQ) algorithm

[D-Kane-Stewart, FOCS’17; …; D-Kane-Ren-Sun, NeurIPS’23]

Fact: Non-Gaussian Component Analysis
• Can be solved with                    samples. 
• All known efficient algorithms require at least            samples (and time).

Informal Theorem: For any “nice” univariate distribution      matching its first m moments with 
the standard Gaussian, any* algorithm that solves NGCA 
• either draws at least            samples
• or has runtime            . 



GENERAL METHODOLOGY FOR SQ LOWER BOUNDS

Pairwise correlation: 

Hypothesis Testing Problem: Given access to a distribution     on       with promise that
• either                 
• or     is selected randomly from                          according to prior 
the goal is to distinguish between the two cases.

Theorem [FGRVX’17]: Suppose there exists a “large” set of distributions in     with “small” 
pairwise correlation with respect to       . Then any SQ algorithm for hypothesis testing task:
• either requires at least one “high-accuracy” query
• or requires a ”large” number of queries. 



STATISTICAL QUERY HARDNESS OF NGCA

Main Theorem [D-Kane-Stewart’17]
Suppose that A matches its first m moments with              and                                   . 
Any SQ algorithm for the testing version of NGCA:
• either requires a query of tolerance at most 
• or requires at least            many queries. 

Testing Version of NGCA: Given access to a distribution     on       with the promise that
• either                 
• or                 , where    is a uniformly random unit vector
the goal is to distinguish between the two cases.



INTUITION: WHY IS NGCA “HARD”?

Claim 1: Low-degree moments do not help.

• Degree at most m moment tensor of        identical to that of 

Claim 2: Random projections do not help.

Distinguishing requires exponentially many random projections.



KEY LEMMA: RANDOM PROJECTIONS ARE ALMOST GAUSSIAN

Key Lemma: Let Q be the distribution of            , where                . Then, we have that:

Ornstein-Uhlenbeck
operator



SQ LOWER BOUND: PROOF OVERVIEW

Want exponentially many       ’s that are nearly uncorrelated.

• Pick set     of near-orthogonal unit vectors. Can get 

• Have 



RECIPE FOR SQ HARDNESS RESULTS

Main Theorem [D-Kane-Stewart’17]
Suppose that A matches its first m moments with              and                                   . 
Any SQ algorithm for the testing version of NGCA:
• either requires a query of tolerance at most 
• or requires at least            many queries. 

Recipe.  Encode     as a NGCA instance:

• Construct moment-matching distribution A such that        is a valid instance of

• Match as many low-degree moments as possible.



MOMENT-MATCHING FOR ROBUST MEAN ESTIMATION

Lemma: There exists a univariate distribution A such that:
• A agrees with               on the first m moments
• A satisfies 

Proof Idea:
• Take 
• Define

where p is degree-m moment-matching polynomial.



MOMENT-MATCHING FOR LEARNING GMMS

Proof Idea:
• Construct discrete distribution B with support k matching its first  
2k-1 moments with              . 

• Rescale B and add a “skinny” Gaussian to get A.

Lemma: There exists a univariate k-GMM A with nearly non-overlapping components such that:
A agrees with               on the first 2k-1 moments.



SQ HARD INSTANCES FOR GMMS: PARALLEL PANCAKES



NGCA captures SQ hard instances of several well-studied learning tasks

• Learning Gaussian Mixtures [D-Kane-Stewart’17, D-Kane-Pittas-Zarifis’23, D-Karmalkar-Pang-Potechin’24]
• Robust mean and covariance estimation [D-Kane-Stewart’17]
• Robust sparse mean estimation, sparse PCA [D-Kane-Stewart’17, D-Stewart’18]
• Robust linear regression [D-Kong-Stewart’19]
• List-decodable learning [D-Kane-Stewart’18, D-Kane-Pensia-Pittas-Stewart’21]
• Adversarially robust PAC learning [Bubeck-Price-Razenshteyn’18]
• Agnostic Learning [Goel-Gollakota-Klivans’20, D-Kane-Zarifis’20, D-Kane-Pittas-Zarifis’21]
• Learning LTFs with (Semi)-random Noise [D-Kane’20, Nasser-Tiegal’22, D-J.D.-Kane-Wang-Zarifis’23]
• Learning (Very Simple) NNs and Generative Models [D-Kane-Kontonis-Zarifis’20 Chen-Li-Li’22, Song’24]
• Learning Mixtures of LTFs [D-Kane-Sun’23]
• Learning Intersections of Halfspaces [Tiegel’24]
• Truncated statistics [D-Kane-Pittas-Zarifis’24]
• …

SQ HARDNESS FOR WIDE RANGE OF PROBLEMS



OPEN PROBLEMS
NGCA leads to wide range of hardness results in SQ model

Open Problem 3: Prove SoS lower bounds for NGCA.

Open Problem 1: Alternative evidence of hardness?

Already known for special cases (reductions):
v Robust sparse mean estimation [Brennan-Bresler’20]
v Learning GMMs [Bruna-Regev-Song-Tang’21]
v Learning with Semi-random Noise [D-Kane-Panurangsi-

Ren’22, D-Kane-Ren’23]

SQ hard instances are 
computationally hard

Open Problem 2: How general is this phenomenon?


