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...without violating individual privacy?

DANGER!

RISK OF PRIVACY HARM(

. X
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Differential Privacy (DP)

A is £-DP if for every pair of inputs X, X' differing on
one individual, and every output o,

Pr(A(X) =0) <e®-Pr(A(X') =o0) .

[DMNSO06]
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Pr(A(X) =0) <e®-Pr(A(X') =o0) .

For most private statistics: one individual = one sample

[DMNSO06]



Differential Privacy (DP)

Consequence: Hypothesis tests to distinguish A(X),
A(X") have:

Type Il error + Typell error =1 — 0(¢).



Approximate Differential Privacy

Ais (g, 0)-DP if for every pair of inputs X, X' differing
on one individual, and every event E,

Pr(A(X) e E) <e®-Pr(A(X') €E) + 6.

[DMNSO06]



Approximate Differential Privacy

Ais (g, 0)-DP if for every pair of inputs X, X' differing
on one individual, and every event E,

Pr(A(X) e E) <e®-Pr(A(X') €E) + 6.

Other variants: concentrated DP, Renyi DP....

[DMNSO06]
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Privacy-Accuracy Tradeoff
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Lots of recent progress!

e Estimate mean of bounded covariance distribution
* Learn a Gaussian

* Linear regression with/without condition-number
dependence

e Learn a mixture of Gaussians
e Stochastic block model
* Graphon estimation




What changed?

1. Different perspective: worst-case privacy, average-case
accuracy.

Example: privately release average of X4, ..., X, vs
privately estimate the mean

2. Renaissance in algorithmic robust statistics



Example 1: Mean Estimation,
Bounded Covariance



Mean Estimation (Bdd Covariance)

Given: n iid samples X, ..., X;, from d-dimensional
distribution D with Cov(D) < I

Goal: Find i € R% such that || — u(D)|| £ «

]
I."




Mean Estimation (Bdd Covariance)

Given: n iid samples X, ..., X;, from d-dimensional
distribution D with Cov(D) < I

Goal: Find i € R% such that || — u(D)|| £ «

“Differ on one individual”: replace X; with X; for a
singlei € |n]



Mean Estimation (Bdd Covariance)

Given: n iid samples X, ..., X;, from d-dimensional
distribution D with Cov(D) < I

Goal: Find i € R% such that || — u(D)|| £ «

[ ] [ ] d ]
Empirical mean: n = —;, not private
a

Optimal tradeoff: n = —

[KSU20]



Mean Estimation (Bdd Covariance)

Given: n iid samples X3, ..., X;, from d-dimensional
distribution D with Cov(D) < I

Goal: Find i € R% such that || — u(D)|| £ «
Technical aside: for pure DP

Need assumption: ||u]| < R, known in advance

Naive algos (“just add noise”): n > poly(R,d, 1/¢)

Smarter algos: n > o) +—d

€ ca?

[KV18, KLSU19]



Mean Estimation (Bdd Covariance)

Given: n iid samples X3, ..., X;, from d-dimensional
distribution D with Cov(D) < I

Goal: Find i € R% such that || — u(D)|| £ «

Technical aside: for approx. DP

log1/é
€

Instead: n >

[KV18, KLSU19]



Given: n iid samples X3, ..., X, from d-dimensional
distribution D with Cov(D) < I

Goal: Find I € R? such that || — u(D)|| <

Empirical mean none Folklore
Tournament d/ea pure [KSU20]
Smart clip+noise dt>/ea®  pure [KLSU19, KSU20]
Smart clip+noise 1
dlogs  appx. [KLSU19, KSU20]
ca?

SoS Exp. Mech. d/sa? pure [HKM22]

( Relies on poly-time robust mean estimator

*ignoring log d ,log 1/« factors, log R-dependence



Example 2: Node-Private Graph
Parameter Estimation
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Given: Sample G ~ G(n,p)
Goal: Find p such that |p —p| < «
“Node privacy”: G, G' differ on one vertex

a”
Edge count \/—_ Folklore

n
Lipschitz Ext. \{l_ g;{:s [BCSZ19]
Laplace noise \/—E (folklore)

en

1
Smooth sensitivity \/— \/_ [SU19]
n en15 B
SoS Exp. Mech. VP \/1_5 [CDHS24]
n en
[AJKSZ22]

*ignoring logs



Robustness vs Privacy: Bird’s Eye
View



Robustness vs Privacy: Intuitions

* Different measures of stability when some inputs
change

U(Xy, .., Xp),
n-corrupted




Robustness vs Privacy: History

STOC 2009:

Differential Privacy and Robust Statistics

Cynthia Dwork Jing Lei*

Microsoft Research Department of Statistics

ABSTRACT

We show by means of several examples that robust statis-
tical estimators present an excellent starting point for dif-
fCI‘CIltld"\ prna,tc CStlIIlatOI‘b Our dl;;,()lltllllls use a new

[S11, AD20, AMSSV20, LKO22, SV22, KMV22,...]






Yet, as of 2021, knew (nearly) optimal robustness-
accuracy tradeoffs, in poly time, for

* Mean estimation

* Sparse mean estimation
* Learning Gaussian

* Linear regression

* Graph density estimation
* (many others)

And NOT optimal privacy-accuracy tradeoffs!

[AJKSZ22]



New in 2020s: a robustness-privacy bridge which can support “modern”
robust statistics techniques




Robustness to Privacy

Two classes of techniques to leverage robust
estimators

 Stability + noise
e Typically not pure DP (good and bad...stay tuned)
 [LWKO21, KMV22, CCEIST23, BHS23, BHHKLOPS24 LJWOQO24,...]

U(Xqy, .., Xp),
n-corrupted




Robustness to Privacy

Two classes of techniques to leverage robust
estimators

 Stability + noise (Gavin’s talk)
e Typically not pure DP (good and bad...stay tuned)
 [LWKO21, KMV22, CCEIST23, BHS23, BHHKLOPS24 LJWOQ24,...]
e Can produce (pretty) fast algorithms

Important difference from robustness: stable function
f:datasets — outputs must satisfy bound on
If (X) — f(X")]| for all neighboring X, X’



Robustness to Privacy

Two classes of techniques to leverage robust estimators

e Stability + noise (Gavin’s talk)
e Typically not pure DP (good and bad...stay tuned)
 [LWKO21, KMV22, CCEIST23, BHS23, BHHKLOPS24 LIW024,...]
e Can produce (pretty) fast algorithms

e Exponential mechanism, inverse sensitivity (Lydia and
Mahbod’s talks) [HT10, AD22, AUZ23, HKM22, HKIMIN23]

e Algorithms often both private and robust
* So far, only very slow (poly time) algorithms



Privacy to Robustness

Some private algorithms are robust merely by virtue of
their (very) strong privacy guarantees.

(Many are not.)

Reasons to care:

e Avenue for robust algorithms (questionable...)

* Lens on how techniques should translate

* Transfer (computational) lower bounds

* Don’t worry about robust and private algorithm design

[folklore, GH22]



Group Privacy and Robustness



Simple observation on group
privacy

Suppose M : datasets — outputs satisfies (&, 0)-
DP and for an input X has:

Pr (M(X) is “good”) =21 —p

internal coins of M

Then for every X'~ X,

Pr (M(X) is “good”) = 1 — e®" (B + nnd)

internal coins of M



Simple observation on group
privacy

Suppose M : datasets — outputs satisfies (&, 0)-
DP and for an input X has:

Pr (M(X) is “good”) =21 —p

internal coins of M

Then for every X'~ X,

Pr (M(X) is “good”) = 1 — e®" (B + nnd)

internal coins of M

1
log log%)
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So, can take 1 as large as min (

What does it say for mean estimation?

Private mean estimation sample complexity
(optimal):

1

n —
ca? €

— can take log 1/ as large as ca*n
— 7 as large as a?

- a =41
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So, can take 1 as large as min (

What does it say for mean estimation?

Private mean estimation sample complexity
(optimal):

1

n —
ca? €

— can take log 1/ as large as ca*n
— 7 as large as a?

- a =0 Any sample-optimal private
algorithm is robust!
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So, can take 1 as large as min (

What does it say for Gaussian mean estimation?

Private Gaussian mean estimation sample complexity
(optimal):

1 1
d 108 log—=
B g5

_I_

a cQ €

— can take log 1/p as large as ean
— n aslargeas a
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So, can take 1 as large as min (

What does it say for Gaussian mean estimation?

Private Gaussian mean estimation sample complexity
(optimal):

1
n=-—- +
a EA E

— can take log 1/f as large as ean

— naslargeas a Implies info-comp gap for

private mean estimation
[DKS17]



So, can take 1 as large as min (
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What does it say for clip+noise private mean
estimation?

Old(er), approx.-DP mean estimator (clip+noise)
(informal)

> dlogl/f
s’

1
logﬁ o2
&n d

— rearranges to— <



The Curious Tale of Covariance-
Aware Mean Estimation



Covariance-Aware Mean
Estimation (Gaussian case)

Samples X4, ..., X;, ~ N(u, X).
1
Goal: find fi s.t. HZ_Z(,& — U) ” <«

Empirical mean satisfies with d /a? samples

Private/robust?



Covariance-Aware Mean
Estimation (Gaussian case)

Samples X4, ..., X,, ~ N(u, X).
1
Goal: find fi s.t. HZ_E(,& — U) ” <«

Empirical mean satisfies with d /a? samples

estimate covariance (robustly/privately), then affine
transform:

— n > d? samples to do robustly + poly time,
— n > d° samples to do privately

SQ lower bound: n = Q(d#) samples needed for robustness [DHPT]



Samples X4, ..., X;, ~ N(u, X).
1
Goal: find fi s.t. HZ_Z(,& — U) H <«
i a  log

[BGSUZ]:n = — +— +T‘S, exponential time

d logl dl 1
[BHS,DHK]: n > -% + -3 1%

a’ 1004 €

, polynomial time



Samples X4, ..., X;, ~ N(u, X).
1
Goal: find fi s.t. HZ_Z(ﬁ — U) H <«
i a  log

[BGSUZ]: n > — + — +—2, exponential time
az?  sa 5

1 1
(BHS,DHK]: n > % + °Es

a2

, polynomial time

Allows for samples-robustness tradeoff nd?



What’s Next?

* DP is used in practice — are new algorithmic ideas
nelpful?

 Fast (“practical”) algorithms with pure-DP
guarantees

* Generic technique to stabilize filters?

* Pure-DP algorithms for non-convex parameter
spaces

* Sparse mean estimation?



