Privacy, Robustness, and Statistics in High Dimensions

Samuel B. Hopkins, MIT TTI Chicago, 2024

How can we utilize data for science, industry, medicine,...

...without violating individual privacy?

 $((\cdot))$

DANGER! RISK OF PRIVACY HARM

Differential Privacy (DP)

A is ε -DP if for every pair of inputs X, X' differing on one individual, and every output o,

$$\Pr(A(X) = o) \le e^{\varepsilon} \cdot \Pr(A(X') = o)$$
.

Differential Privacy (DP)

A is c DP if for every pair of inputs X, X' differing on one individual, and every output o,

$$\Pr(A(X) = o) \le e^{\varepsilon} \cdot \Pr(A(X') = o)$$
.

For most private statistics: one individual = one sample

[DMNS06]

Differential Privacy (DP)

Consequence: Hypothesis tests to distinguish A(X), A(X') have:

Type I error + Type II error $\geq 1 - O(\varepsilon)$.

Approximate Differential Privacy

A is (ε, δ) -DP if for every pair of inputs X, X' differing on one individual, and every event E,

$$\Pr(A(X) \in E) \le e^{\varepsilon} \cdot \Pr(A(X') \in E) + \delta.$$

Approximate Differential Privacy

A is (ε, δ) -DP if for every pair of inputs X, X' differing on one individual, and every event E,

$$\Pr(A(X) \in E) \le e^{\varepsilon} \cdot \Pr(A(X') \in E) + \delta.$$

Other variants: concentrated DP, Renyi DP,...

Privacy-Accuracy Tradeoff

Lots of recent progress!

- Estimate mean of bounded covariance distribution
- Learn a Gaussian
- Linear regression with/without condition-number dependence
- Learn a mixture of Gaussians
- Stochastic block model
- Graphon estimation

What changed?

1. Different perspective: worst-case privacy, average-case accuracy.

Example: privately release average of X_1, \ldots, X_n vs privately estimate the mean

2. Renaissance in algorithmic robust statistics

Example 1: Mean Estimation, Bounded Covariance

Given: *n* iid samples $X_1, ..., X_n$ from *d*-dimensional distribution *D* with $Cov(D) \leq I$ **Goal:** Find $\hat{\mu} \in \mathbb{R}^d$ such that $\|\hat{\mu} - \mu(D)\| \leq \alpha$

Given: *n* iid samples $X_1, ..., X_n$ from *d*-dimensional distribution *D* with $Cov(D) \leq I$ **Goal:** Find $\hat{\mu} \in \mathbb{R}^d$ such that $\|\hat{\mu} - \mu(D)\| \leq \alpha$

"Differ on one individual": replace X_i with X'_i for a single $i \in [n]$

Given: *n* iid samples $X_1, ..., X_n$ from *d*-dimensional distribution *D* with $Cov(D) \leq I$ **Goal:** Find $\hat{\mu} \in \mathbb{R}^d$ such that $\|\hat{\mu} - \mu(D)\| \leq \alpha$

Empirical mean: $n \approx \frac{d}{\alpha^2}$, not private

Optimal tradeoff: $n \approx \frac{d}{\epsilon \alpha^2}$

[KSU20]

Given: *n* iid samples $X_1, ..., X_n$ from *d*-dimensional distribution *D* with $Cov(D) \leq I$ **Goal:** Find $\hat{\mu} \in \mathbb{R}^d$ such that $\|\hat{\mu} - \mu(D)\| \leq \alpha$

Technical aside: for pure DP

Need assumption: $\|\mu\| \leq R$, known in advance

Naïve algos ("just add noise"): $n \gg \text{poly}(R, d, 1/\varepsilon)$ Smarter algos: $n \gg \frac{d \log(R)}{\varepsilon} + \frac{d}{\varepsilon \alpha^2}$

[KV18, KLSU19]

Given: *n* iid samples $X_1, ..., X_n$ from *d*-dimensional distribution *D* with $Cov(D) \leq I$ **Goal:** Find $\hat{\mu} \in \mathbb{R}^d$ such that $\|\hat{\mu} - \mu(D)\| \leq \alpha$

Technical aside: for approx. DP

Need assumption: $\|\mu\| \leq R$, known in advance

Instead:
$$n \gg \frac{\log 1/\delta}{\varepsilon}$$

Given: *n* iid samples $X_1, ..., X_n$ from *d*-dimensional distribution *D* with $Cov(D) \leq I$ **Goal:** Find $\hat{\mu} \in \mathbb{R}^d$ such that $\|\hat{\mu} - \mu(D)\| \leq \alpha$

Estimator	Samples*	Priv.?	Poly-Time?	Reference
Empirical mean	d/α^2	none		Folklore
Tournament	$d/\varepsilon \alpha^2$	pure		[KSU20]
Smart clip+noise	$d^{1.5}/\varepsilon \alpha^2$	pure		[KLSU19, KSU20]
Smart clip+noise	$\frac{d\sqrt{\log\frac{1}{\delta}}}{\varepsilon\alpha^2}$	аррх.		[KLSU19, KSU20]
SoS Exp. Mech.	$d/\varepsilon \alpha^2$	pure		[H KM22]

C Relies on poly-time robust mean estimator

*ignoring log d , log $1/\alpha$ factors, log R-dependence

Example 2: Node-Private Graph Parameter Estimation

Graph Density Estimation

Given: Sample $G \sim G(n, p)$

Goal: Find \hat{p} such that $|\hat{p} - p| \leq \alpha$

"Node privacy": *G*, *G*' differ on one vertex

Given: Sample $G \sim G(n, p)$ **Goal:** Find \hat{p} such that $|\hat{p} - p| \leq \alpha$ **"Node privacy":** G, G' differ on one vertex

Estimator	$lpha^*$	Priv.?	Poly-Time?	Reference
Edge count	$\frac{\sqrt{p}}{n}$			Folklore
Lipschitz Ext.	$\frac{\sqrt{p}}{n} + \frac{\sqrt{p}}{\varepsilon n^{1.5}}$			[BCSZ19]
Laplace noise	$rac{\sqrt{p}}{arepsilon n}$			(folklore)
Smooth sensitivity	$\frac{\sqrt{p}}{n} + \frac{\sqrt{p}}{\varepsilon n^{1.5}} + \frac{1}{\varepsilon^2 n^2}$			[SU19]
SoS Exp. Mech.	$\frac{\sqrt{p}}{n} + \frac{\sqrt{p}}{\varepsilon n^{1.5}}$			[CDHS24]

*ignoring logs

Robustness vs Privacy: Bird's Eye View

Robustness vs Privacy: Intuitions

• Different measures of *stability when some inputs change*

Robustness vs Privacy: History

STOC 2009:

Differential Privacy and Robust Statistics

Cynthia Dwork Microsoft Research Jing Lei* Department of Statistics

ABSTRACT

We show by means of several examples that robust statistical estimators present an excellent starting point for differentially private estimators. Our algorithms use a new paradigm for differentially private mechanisms, which we

[S11, AD20, AMSSV20, LKO22, SV22, KMV22,...]

Yet, as of 2021, knew (nearly) optimal **robustness**accuracy tradeoffs, in poly time, for

- Mean estimation
- Sparse mean estimation
- Learning Gaussian
- Linear regression
- Graph density estimation
- (many others)

And NOT optimal **privacy**-accuracy tradeoffs!

New in 2020s: a robustness-privacy bridge which can support "modern" robust statistics techniques

Robustness to Privacy

Two classes of techniques to leverage robust estimators

- Stability + noise
 - Typically not pure DP (good and bad...stay tuned)
 - [LWKO21, KMV22, CCEIST23, BHS23, BHHKLOPS24 LJWO24,...]

Robustness to Privacy

Two classes of techniques to leverage robust estimators

- Stability + noise (Gavin's talk)
 - Typically not pure DP (good and bad...stay tuned)
 - [LWKO21, KMV22, CCEIST23, B**H**S23, B**H**HKLOPS24 LJWO24,...]
 - Can produce (pretty) fast algorithms

Important difference from robustness: stable function $f: datasets \rightarrow outputs$ must satisfy bound on ||f(X) - f(X')|| for all neighboring X, X'

Robustness to Privacy

Two classes of techniques to leverage robust estimators

- Stability + noise (Gavin's talk)
 - Typically not pure DP (good and bad...stay tuned)
 - [LWKO21, KMV22, CCEIST23, B**H**S23, B**H**HKLOPS24 LJWO24,...]
 - Can produce (pretty) fast algorithms
- Exponential mechanism, inverse sensitivity (Lydia and Mahbod's talks) [HT10, AD22, AUZ23, HKM22, HKMN23]
 - Algorithms often both private and robust
 - So far, only very slow (poly time) algorithms

Privacy to Robustness

Some private algorithms are robust merely by virtue of their (very) strong privacy guarantees.

(Many are not.)

Reasons to care:

- Avenue for robust algorithms (questionable...)
- Lens on how techniques should translate
- Transfer (computational) lower bounds
- Don't worry about robust **and** private algorithm design

[folklore, GH22]

Group Privacy and Robustness

Simple observation on group privacy

Suppose $M : datasets \rightarrow outputs$ satisfies (ε, δ) -DP and for an input X has:

 $\Pr_{\text{internal coins of } M}(M(X) \text{ is "good"}) \ge 1 - \beta$

Then for every $X' \sim_{\eta n} X$,

 $\Pr_{\text{internal coins of } M}(M(X) \text{ is "good"}) \ge 1 - e^{\varepsilon \eta n} (\beta + \eta n \delta)$

Simple observation on group privacy

Suppose $M : datasets \rightarrow outputs$ satisfies (ε, δ) -DP and for an input X has:

 $\Pr_{\text{internal coins of } M}(M(X) \text{ is "good"}) \ge 1 - \beta$

Then for every $X' \sim_{\eta n} X$,

 $\Pr_{\text{internal coins of } M}(M(X) \text{ is "good"}) \ge 1 - e^{\varepsilon \eta n} (\beta + \eta n \delta)$

So, can take η as large as $\min\left(\frac{\log\frac{1}{\beta}}{\epsilon n}, \frac{\log\frac{1}{\delta}}{\epsilon n}\right)$

So, can take η as large as $\min\left(\frac{\log\frac{1}{\beta}}{\epsilon n}, \frac{\log\frac{1}{\delta}}{\epsilon n}\right)$

What does it say for mean estimation?

Private mean estimation sample complexity (optimal):

$$n = \frac{d + \log \frac{1}{\beta}}{\varepsilon \alpha^2} + \frac{\log \frac{1}{\delta}}{\varepsilon}$$

→ can take $\log 1/\beta$ as large as $\varepsilon \alpha^2 n$ → η as large as α^2

 $\rightarrow \alpha = \sqrt{\eta}$

So, can take η as large as $\min\left(\frac{\log\frac{1}{\beta}}{\epsilon n}, \frac{\log\frac{1}{\delta}}{\epsilon n}\right)$

What does it say for mean estimation?

Private mean estimation sample complexity (optimal):

$$n = \frac{d + \log \frac{1}{\beta}}{\varepsilon \alpha^2} + \frac{\log \frac{1}{\delta}}{\varepsilon}$$

→ can take $\log 1/\beta$ as large as $\epsilon \alpha^2 n$ → η as large as α^2

 $\rightarrow \alpha = \sqrt{\eta}$

Any sample-optimal private algorithm is robust!

What does it say for **Gaussian** mean estimation?

Private Gaussian mean estimation sample complexity (optimal):

$$n = \frac{d}{\alpha^2} + \frac{d + \log \frac{1}{\beta}}{\varepsilon \alpha} + \frac{\log \frac{1}{\delta}}{\varepsilon}$$

→ can take $\log 1/\beta$ as large as $\epsilon \alpha n$ → η as large as α

What does it say for **Gaussian** mean estimation?

Private Gaussian mean estimation sample complexity (optimal):

$$n = \frac{d}{\alpha^2} + \frac{d + \log \frac{1}{\beta}}{\varepsilon \alpha} + \frac{\log \frac{1}{\delta}}{\varepsilon}$$

 \rightarrow can take log $1/\beta$ as large as $\epsilon \alpha n$

 $\rightarrow \eta$ as large as α

Implies info-comp gap for private mean estimation [DKS17]

So, can take η as large as $\min\left(\frac{\log\frac{1}{\beta}}{\epsilon n}, \frac{\log\frac{1}{\delta}}{\epsilon n}\right)$

What does it say for clip+noise private mean estimation?

Old(er), approx.-DP mean estimator (clip+noise) (informal)

$$n \ge \frac{d \log 1/\beta}{\varepsilon \alpha^2}$$

$$\rightarrow$$
 rearranges to $\frac{\log \frac{1}{\beta}}{\epsilon n} \leq \frac{\alpha^2}{d}$

The Curious Tale of Covariance-Aware Mean Estimation

Covariance-Aware Mean Estimation (Gaussian case)

Samples
$$X_1, \dots, X_n \sim N(\mu, \Sigma)$$
.
Goal: find $\hat{\mu}$ s.t. $\left\| \Sigma^{-\frac{1}{2}} (\hat{\mu} - \mu) \right\| \leq \alpha$

Empirical mean satisfies with d/α^2 samples

Private/robust?

Covariance-Aware Mean Estimation (Gaussian case)

Samples
$$X_1, \dots, X_n \sim N(\mu, \Sigma)$$
.
Goal: find $\hat{\mu}$ s.t. $\left\| \Sigma^{-\frac{1}{2}} (\hat{\mu} - \mu) \right\| \leq \alpha$

Empirical mean satisfies with d/α^2 samples

estimate covariance (robustly/privately), then affine transform:

→ $n \ge d^2$ samples to do robustly + poly time, → $n \ge d^{1.5}$ samples to do privately

SQ lower bound: $n \ge \Omega(d^2)$ samples needed for robustness [DHPT]

Samples
$$X_1, ..., X_n \sim N(\mu, \Sigma)$$
.
Goal: find $\hat{\mu}$ s.t. $\left\| \Sigma^{-\frac{1}{2}} (\hat{\mu} - \mu) \right\| \leq \alpha$

[BGSUZ]:
$$n \ge \frac{d}{\alpha^2} + \frac{d}{\epsilon \alpha} + \frac{\log \frac{1}{\delta}}{\epsilon}$$
, exponential time

[BHS,DHK]:
$$n \ge \frac{d}{\alpha^2} + \frac{d\sqrt{\log\frac{1}{\delta}}}{\epsilon\alpha} + \frac{d\log\frac{1}{\delta}}{\epsilon}$$
, polynomial time

Samples
$$X_1, ..., X_n \sim N(\mu, \Sigma)$$
.
Goal: find $\hat{\mu}$ s.t. $\left\| \Sigma^{-\frac{1}{2}} (\hat{\mu} - \mu) \right\| \leq \alpha$

[BGSUZ]:
$$n \ge \frac{d}{\alpha^2} + \frac{d}{\epsilon \alpha} + \frac{\log \frac{1}{\delta}}{\epsilon}$$
, exponential time

$$[\mathsf{BHS},\mathsf{DHK}]: n \ge \frac{d}{\alpha^2} + \frac{d\sqrt{\log\frac{1}{\delta}}}{\varepsilon\alpha} + \frac{d\log\frac{1}{\delta}}{\varepsilon}, \text{ polynomial time}$$

Allows for samples-robustness tradeoff ηd^2

What's Next?

- DP is used in practice are new algorithmic ideas helpful?
- Fast ("practical") algorithms with pure-DP guarantees
 - Generic technique to stabilize filters?
- Pure-DP algorithms for non-convex parameter spaces
 - Sparse mean estimation?