
Privacy, Robustness, and 
Statistics in High 

Dimensions

Samuel B. Hopkins, MIT
TTI Chicago, 2024





How can we utilize data for science, industry, medicine,…



…without violating individual privacy?



Differential Privacy (DP)

𝐴 is 𝜀-DP if for every pair of inputs 𝑋, 𝑋! differing on 
one individual, and every output 𝑜,

Pr(𝐴 𝑋 = 𝑜) ≤ 𝑒" ⋅ Pr 𝐴 𝑋! = 𝑜 .

[DMNS06]



Differential Privacy (DP)

𝐴 is 𝜀-DP if for every pair of inputs 𝑋, 𝑋! differing on 
one individual, and every output 𝑜,

Pr(𝐴 𝑋 = 𝑜) ≤ 𝑒" ⋅ Pr 𝐴 𝑋! = 𝑜 .

[DMNS06]

For most private statistics: one individual = one sample



Differential Privacy (DP)

Consequence: Hypothesis tests to distinguish 𝐴(𝑋), 
𝐴(𝑋!) have:

𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 + 𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 ≥ 1 − 𝑂(𝜀).



Approximate Differential Privacy

𝐴 is 𝜀, 𝛿 -DP if for every pair of inputs 𝑋, 𝑋! differing 
on one individual, and every event 𝐸,

Pr(𝐴 𝑋 ∈ 𝐸) ≤ 𝑒" ⋅ Pr 𝐴 𝑋! ∈ 𝐸 + 𝛿.

[DMNS06]



Approximate Differential Privacy

𝐴 is 𝜀, 𝛿 -DP if for every pair of inputs 𝑋, 𝑋! differing 
on one individual, and every event 𝐸,

Pr(𝐴 𝑋 ∈ 𝐸) ≤ 𝑒" ⋅ Pr 𝐴 𝑋! ∈ 𝐸 + 𝛿.

[DMNS06]

Other variants: concentrated DP, Renyi DP,…



Privacy-Accuracy Tradeoff

Information-theoretic limit

Known Efficient Algos



Lots of recent progress!

• Estimate mean of bounded covariance distribution
• Learn a Gaussian
• Linear regression with/without condition-number 

dependence
• Learn a mixture of Gaussians
• Stochastic block model
• Graphon estimation
• …



What changed?

1. Different perspective: worst-case privacy, average-case 
accuracy.

Example: privately release average of 𝑋!, … , 𝑋" vs 
privately estimate the mean

2. Renaissance in algorithmic robust statistics



Example 1: Mean Estimation, 
Bounded Covariance



Mean Estimation (Bdd Covariance)

Given: 𝑛 iid samples 𝑋#, … , 𝑋$ from 𝑑-dimensional 
distribution 𝐷 with 𝐶𝑜𝑣 𝐷 ≼ 𝐼
Goal: Find C𝜇 ∈ ℝ% such that C𝜇 − 𝜇(𝐷) ≤ 𝛼



Mean Estimation (Bdd Covariance)

Given: 𝑛 iid samples 𝑋#, … , 𝑋$ from 𝑑-dimensional 
distribution 𝐷 with 𝐶𝑜𝑣 𝐷 ≼ 𝐼
Goal: Find C𝜇 ∈ ℝ% such that C𝜇 − 𝜇(𝐷) ≤ 𝛼

“Differ on one individual”: replace 𝑋& with 𝑋&! for a 
single 𝑖 ∈ [𝑛]



Mean Estimation (Bdd Covariance)

Given: 𝑛 iid samples 𝑋#, … , 𝑋$ from 𝑑-dimensional 
distribution 𝐷 with 𝐶𝑜𝑣 𝐷 ≼ 𝐼
Goal: Find C𝜇 ∈ ℝ% such that C𝜇 − 𝜇(𝐷) ≤ 𝛼

Empirical mean: 𝑛 ≍ %
'#

, not private

Optimal tradeoff: 𝑛 ≍ %
"'#

[KSU20]



Mean Estimation (Bdd Covariance)

Given: 𝑛 iid samples 𝑋#, … , 𝑋$ from 𝑑-dimensional 
distribution 𝐷 with 𝐶𝑜𝑣 𝐷 ≼ 𝐼
Goal: Find C𝜇 ∈ ℝ% such that C𝜇 − 𝜇(𝐷) ≤ 𝛼

Empirical mean: 𝑛 ≍ %
'#

, not private

Optimal tradeoff: 𝑛 ≍ %
"'#

Technical aside: for pure DP

Need assumption: 𝜇 ≤ 𝑅, known in advance

Naïve algos (“just add noise”): 𝑛 ≫ poly(𝑅, 𝑑, 1/𝜀)
Smarter algos: 𝑛 ≫ ! 𝐥𝐨𝐠 𝑹

&
+ !

&'!

[KV18, KLSU19]



Mean Estimation (Bdd Covariance)

Given: 𝑛 iid samples 𝑋#, … , 𝑋$ from 𝑑-dimensional 
distribution 𝐷 with 𝐶𝑜𝑣 𝐷 ≼ 𝐼
Goal: Find C𝜇 ∈ ℝ% such that C𝜇 − 𝜇(𝐷) ≤ 𝛼

Empirical mean: 𝑛 ≍ %
'#

, not private

Optimal tradeoff: 𝑛 ≍ %
"'#

Technical aside: for approx. DP

Need assumption: 𝜇 ≤ 𝑅, known in advance

Instead: 𝑛 ≫ ()* +/-
&

[KV18, KLSU19]



Given: 𝑛 iid samples 𝑋#, … , 𝑋$ from 𝑑-dimensional 
distribution 𝐷 with 𝐶𝑜𝑣 𝐷 ≼ 𝐼
Goal: Find C𝜇 ∈ ℝ% such that C𝜇 − 𝜇(𝐷) ≤ 𝛼

*ignoring log 𝑑 , log 1/𝛼 factors, log𝑅-dependence

Estimator Samples* Priv.? Poly-Time? Reference

Empirical mean 𝑑/𝛼! none Folklore

Tournament 𝑑/𝜀𝛼! pure [KSU20]

Smart clip+noise 𝑑".$/𝜀𝛼! pure [KLSU19, KSU20]

Smart clip+noise
𝑑 log 1𝛿
𝜀𝛼!

appx. [KLSU19, KSU20]

SoS Exp. Mech. 𝑑/𝜀𝛼! pure [HKM22]

Relies on poly-time robust mean estimator



Example 2: Node-Private Graph 
Parameter Estimation



Graph Density Estimation
Given: Sample 𝐺 ∼ 𝐺(𝑛, 𝑝)
Goal: Find 𝑝̂ such that 𝑝̂ − 𝑝 ≤ 𝛼
“Node privacy”: 𝑮,𝑮! differ on one vertex



Given: Sample 𝐺 ∼ 𝐺(𝑛, 𝑝)
Goal: Find 𝑝̂ such that 𝑝̂ − 𝑝 ≤ 𝛼
“Node privacy”: 𝑮,𝑮! differ on one vertex

Estimator 𝜶∗ Priv.? Poly-Time? Reference

Edge count
𝑝
𝑛

Folklore

Lipschitz Ext. 𝑝
𝑛
+

𝑝
𝜀𝑛".$

[BCSZ19]

Laplace noise 𝑝
𝜀𝑛

(folklore)

Smooth sensitivity 𝑝
𝑛
+

𝑝
𝜀𝑛".$

+
1

𝜀!𝑛!
[SU19]

SoS Exp. Mech. 𝑝
𝑛
+

𝑝
𝜀𝑛".$

[CDHS24]

*ignoring logs [AJKSZ22]



Robustness vs Privacy: Bird’s Eye 
View



Robustness vs Privacy: Intuitions

• Different measures of stability when some inputs 
change

!𝜇(𝑌", … , 𝑌#)

!𝜇(𝑋", … , 𝑋#), 
𝜂-corrupted

𝜇(𝐷)
𝛼



Robustness vs Privacy: History
STOC 2009:

[S11, AD20, AMSSV20, LKO22, SV22, KMV22,…] 





Yet, as of 2021, knew (nearly) optimal robustness-
accuracy tradeoffs, in poly time, for
• Mean estimation
• Sparse mean estimation
• Learning Gaussian
• Linear regression
• Graph density estimation
• (many others)

And NOT optimal privacy-accuracy tradeoffs!

[AJKSZ22]



New in 2020s: a robustness-privacy bridge which can support “modern” 
robust statistics techniques



Robustness to Privacy

Two classes of techniques to leverage robust 
estimators

• Stability + noise
• Typically not pure DP (good and bad…stay tuned)
• [LWKO21, KMV22, CCEIST23, BHS23, BHHKLOPS24 LJWO24,…]

!𝜇(𝑌", … , 𝑌#)

!𝜇(𝑋", … , 𝑋#), 
𝜂-corrupted

𝜇(𝐷)
𝛼 +



Robustness to Privacy

Two classes of techniques to leverage robust 
estimators

• Stability + noise (Gavin’s talk)
• Typically not pure DP (good and bad…stay tuned)
• [LWKO21, KMV22, CCEIST23, BHS23, BHHKLOPS24 LJWO24,…]
• Can produce (pretty) fast algorithms

Important difference from robustness: stable function 
𝑓: 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 → 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 must satisfy bound on 
𝑓 𝑋 − 𝑓(𝑋$) for all neighboring 𝑋, 𝑋′



Robustness to Privacy

Two classes of techniques to leverage robust estimators

• Stability + noise (Gavin’s talk)
• Typically not pure DP (good and bad…stay tuned)
• [LWKO21, KMV22, CCEIST23, BHS23, BHHKLOPS24 LJWO24,…]
• Can produce (pretty) fast algorithms

• Exponential mechanism, inverse sensitivity (Lydia and 
Mahbod’s talks) [HT10, AD22, AUZ23, HKM22, HKMN23]
• Algorithms often both private and robust
• So far, only very slow (poly time) algorithms



Privacy to Robustness

Some private algorithms are robust merely by virtue of 
their (very) strong privacy guarantees.

(Many are not.)

Reasons to care:
• Avenue for robust algorithms (questionable…)
• Lens on how techniques should translate
• Transfer (computational) lower bounds
• Don’t worry about robust and private algorithm design

[folklore, GH22]



Group Privacy and Robustness



Simple observation on group 
privacy
Suppose 𝑀 ∶ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 → 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 satisfies (𝜀, 𝛿)-
DP and for an input 𝑋 has:

Pr
()*+,)-. /0()1 02 3

(𝑀 𝑋 is “good”) ≥ 1 − 𝛽

Then for every 𝑋!~4$ 𝑋,

Pr
./012/3( 4)./5 )6 7

(𝑀 𝑋 is “good”) ≥ 1 − 𝑒&89(𝛽 + 𝜂𝑛𝛿)



Simple observation on group 
privacy
Suppose 𝑀 ∶ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 → 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 satisfies (𝜀, 𝛿)-
DP and for an input 𝑋 has:

Pr
()*+,)-. /0()1 02 3

(𝑀 𝑋 is “good”) ≥ 1 − 𝛽

Then for every 𝑋!~4$ 𝑋,

Pr
./012/3( 4)./5 )6 7

(𝑀 𝑋 is “good”) ≥ 1 − 𝑒&89(𝛽 + 𝜂𝑛𝛿)

So, can take 𝜼 as large as 𝐦𝐢𝐧
𝐥𝐨𝐠𝟏𝜷
𝜺𝒏
,
𝐥𝐨𝐠𝟏𝜹
𝜺𝒏



So, can take 𝜼 as large as 𝐦𝐢𝐧
𝐥𝐨𝐠𝟏𝜷
𝜺𝒏
,
𝐥𝐨𝐠𝟏𝜹
𝜺𝒏



So, can take 𝜼 as large as 𝐦𝐢𝐧
𝐥𝐨𝐠𝟏𝜷
𝜺𝒏
,
𝐥𝐨𝐠𝟏𝜹
𝜺𝒏

What does it say for mean estimation?

Private mean estimation sample complexity  
(optimal):

𝑛 =
𝑑 + log 1𝛽
𝜀𝛼5 +

log 1𝛿
𝜀

→ can take log 1/𝛽 as large as 𝜀𝛼5𝑛
→ 𝜂 as large as 𝛼5
→ 𝛼 = 𝜂



So, can take 𝜼 as large as 𝐦𝐢𝐧
𝐥𝐨𝐠𝟏𝜷
𝜺𝒏
,
𝐥𝐨𝐠𝟏𝜹
𝜺𝒏

What does it say for mean estimation?

Private mean estimation sample complexity  
(optimal):

𝑛 =
𝑑 + log 1𝛽
𝜀𝛼5 +

log 1𝛿
𝜀

→ can take log 1/𝛽 as large as 𝜀𝛼5𝑛
→ 𝜂 as large as 𝛼5
→ 𝛼 = 𝜂 Any sample-optimal private 

algorithm is robust!



So, can take 𝜼 as large as 𝐦𝐢𝐧
𝐥𝐨𝐠𝟏𝜷
𝜺𝒏
,
𝐥𝐨𝐠𝟏𝜹
𝜺𝒏

What does it say for Gaussian mean estimation?

Private Gaussian mean estimation sample complexity  
(optimal):

𝑛 =
𝑑
𝛼5 +

𝑑 + log 1𝛽
𝜀𝛼 +

log 1𝛿
𝜀

→ can take log 1/𝛽 as large as 𝜀𝛼𝑛
→ 𝜂 as large as 𝛼



So, can take 𝜼 as large as 𝐦𝐢𝐧
𝐥𝐨𝐠𝟏𝜷
𝜺𝒏
,
𝐥𝐨𝐠𝟏𝜹
𝜺𝒏

What does it say for Gaussian mean estimation?

Private Gaussian mean estimation sample complexity  
(optimal):

𝑛 =
𝑑
𝛼5 +

𝑑 + log 1𝛽
𝜀𝛼 +

log 1𝛿
𝜀

→ can take log 1/𝛽 as large as 𝜀𝛼𝑛
→ 𝜂 as large as 𝛼 Implies info-comp gap for 

private mean estimation 
[DKS17]



So, can take 𝜼 as large as 𝐦𝐢𝐧
𝐥𝐨𝐠𝟏𝜷
𝜺𝒏
,
𝐥𝐨𝐠𝟏𝜹
𝜺𝒏

What does it say for clip+noise private mean 
estimation?

Old(er), approx.-DP mean estimator (clip+noise) 
(informal)

𝑛 ≥
𝑑 log 1/𝛽
𝜀𝛼5

→ rearranges to 
.06%&
"$

≤ '#

%



The Curious Tale of Covariance-
Aware Mean Estimation



Covariance-Aware Mean 
Estimation (Gaussian case)
Samples 𝑋#, … , 𝑋$ ∼ 𝑁 𝜇, Σ .

Goal: find C𝜇 s.t. Σ7
%
#( C𝜇 − 𝜇) ≤ 𝛼

Empirical mean satisfies with 𝑑/𝛼5 samples

Private/robust?



Covariance-Aware Mean 
Estimation (Gaussian case)
Samples 𝑋#, … , 𝑋$ ∼ 𝑁 𝜇, Σ .

Goal: find C𝜇 s.t. Σ7
%
#( C𝜇 − 𝜇) ≤ 𝛼

Empirical mean satisfies with 𝑑/𝛼5 samples

estimate covariance (robustly/privately), then affine 
transform: 
→ 𝑛 ≥ 𝑑5 samples to do robustly + poly time,
→ 𝑛 ≥ 𝑑#.9 samples to do privately

SQ lower bound: 𝑛 ≥ Ω(𝑑') samples needed for robustness [DHPT]



Samples 𝑋#, … , 𝑋$ ∼ 𝑁 𝜇, Σ .

Goal: find C𝜇 s.t. Σ7
%
#( C𝜇 − 𝜇) ≤ 𝛼

[BGSUZ]: 𝑛 ≥ %
'#
+ %
"'
+
.06%'
"

, exponential time

[BHS,DHK]: 𝑛 ≥ !
'!
+

! ()*()
&'

+
! ()*()
&

, polynomial time



Samples 𝑋#, … , 𝑋$ ∼ 𝑁 𝜇, Σ .

Goal: find C𝜇 s.t. Σ7
%
#( C𝜇 − 𝜇) ≤ 𝛼

[BGSUZ]: 𝑛 ≥ %
'#
+ %
"'
+
.06%'
"

, exponential time

[BHS,DHK]: 𝑛 ≥ !
'!
+

! ()*()
&'

+
! ()*()
&

, polynomial time

Allows for samples-robustness tradeoff 𝜂𝑑5



What’s Next?

• DP is used in practice – are new algorithmic ideas 
helpful?
• Fast (“practical”) algorithms with pure-DP 

guarantees
• Generic technique to stabilize filters?

• Pure-DP algorithms for non-convex parameter 
spaces
• Sparse mean estimation?


