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• Mixtures of  Gaussians in : 
with probability , sample from 




• : dimension


• : number of components


• : weights


• : means


• : covariances
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• Input: i.i.d. samples from a Gaussian mixture 


• Output: A Gaussian mixture  close to  in total variation distance
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• Input: i.i.d. samples from a Gaussian mixture 


• Output: A Gaussian mixture  close to  in total variation distance
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dTV(p, q) =
1
2 ∫ |p(x) − q(x) | dx

• natural info-theoretic measure

• implies all parameter distance guarantees

[Liu-Moitra’21,Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]



• Input: i.i.d. samples from a Gaussian mixture 


• Output: A Gaussian mixture  close to  in total variation distance
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[Pearson 1894]

[Dasgupta’98]                         	 Random Projection     
[Arora-Kannan’01]	 	  
[Vempala-Wang’02]	 	 PCA 
[Brubaker-Vempala’08]	       	 Isotropic PCA 
… 

[Kalai-Moitra-Valiant’09, Moitra-Valiant’10]            Many 1-d Random Projections   
[Belkin-Sinha’10]

…



• [Moitra-Valiant’10, based on Kalai-M-V’09]: There is an algorithm that 
learns -GMMs up to -TV error in time k δ (d/δ)kO(k2)

Learning Gaussian Mixture Models
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What if Data has Outliers?

• Robust statistical models


• Tukey and Huber initiated work in 60’s


• Capture systematic error and adversarial outliers
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Robust Learning
• Input: a constant fraction  of data is arbitrarily corrupted by the adversary


• We know nothing about the corrupted data, except the number is bounded


• Goal: learn the distribution within total variation distance


• The error should be independent of dimension


• The optimal error is 

ϵ

O(ϵ)
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Robust Learning
• Input: a constant fraction  of data is arbitrarily corrupted by the adversary


• We know nothing about the corrupted data, except the number is bounded


• Goal: learn the distribution within total variation distance


• The error should be independent of dimension


• The optimal error is 

ϵ

O(ϵ)
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captures the power of 
adversarial corruption



Robustly Learning Gaussian Mixture Models
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• Input: -corrupted samples from a Gaussian mixture 


• Output: A Gaussian mixture  -close to  in Total Variation 
Distance


• [Moitra-Valiant’10] can only handle  fraction of outliers

ϵ M
̂M poly(ϵ) M

1/poly(d)



Robustly Learning Gaussian Mixture Models
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• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]: An -robust 
algorithm for learning arbitrary GMMs


• Samples: 


• Time: 


• Error:  in TV distance

ϵ

n ≥ dO(k)polyk(1/ϵ)

poly(n)

polyk(ϵ)
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• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]: An -robust 
algorithm for learning arbitrary GMMs


• Samples: 


• Time: 


• Error:  in TV distance

ϵ

n ≥ dO(k)polyk(1/ϵ)

poly(n)

polyk(ϵ)

No constraint on 
minimum weight/

covariances
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• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]: An -robust 
algorithm for learning arbitrary GMMs


• Samples: 


• Time: 


• Error:  in TV distance

ϵ

n ≥ dO(k)polyk(1/ϵ)

poly(n)

polyk(ϵ)

Matches SQ lower 
bound in 

[Diakonikolas-Kane-
Stewart’18]
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• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]: An -robust 
algorithm for learning arbitrary GMMs


• Samples: 


• Time: 


• Error:  in TV distance

ϵ

n ≥ dO(k)polyk(1/ϵ)

poly(n)

polyk(ϵ)

Improves the non-robust 
running time of [Moitra-
Valiant’10] if ϵ = ω(1/d)



Robustly Learning Gaussian Mixture Models
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• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]: An -robust 
algorithm for learning arbitrary GMMs


• Concurrent work [Liu-Moitra’21]: An -robust parameter estimation 
algorithm for GMMs s.t. all pairs -TV far


ϵ

ϵ
≥ Ωk(1)

Samples: n ≥ dO(k)polyk(1/ϵ) Error: polyk(ϵ)Time: poly(n)

Samples: n ≥ df( 1
wmin

)polyk(1/ϵ) Error: ϵ f( 1
wmin

)Time: poly(n)



Parameter Recovery
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• Theorem: -TV distance implies -component distance for 
arbitrary Gaussian mixtures


• Relies on a key lemma from [Liu-Moitra’21]


• Generalizes the identifiability theorem in [Liu-Moitra’21]


• Corollary [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]: The same 
algorithm in our main theorem also recovers the parameters/components.

ϵ polyk(ϵ)



Overall Algoritm
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TV Distance Separation
• Two Gaussians are separated in TV distance iff one of the following holds:
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𝜇𝑖 𝜇𝑗

𝑁(𝜇𝑗, 𝐼)

e.g., 𝜇𝑖 − 𝜇𝑗 ≫ 2

𝜇𝑖 = 𝜇𝑗

e.g., , Σi = I Σj = I − vv⊤

𝜇𝑖 = 𝜇𝑗

e.g., Σ𝑖 = 𝐼,   Σ𝑗 = (1 −
100

𝑑 )𝐼

Mean-separated		      spectrally separated		 Frobenius separated


	 	 	 	                          ∃𝑣:
𝑣𝑇Σ𝑖𝑣
𝑣𝑇Σ𝑗𝑣

> 𝑐
𝑁(𝜇i, 𝐼)



Overall Algoritm
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𝜇𝑖 = 𝜇𝑗

𝜇𝑖 = 𝜇𝑗



Overall Algoritm
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Our main tools



Step I: Cluster while you can

21



Robust Clustering

• [Bakshi-Kothari’20, Diakonikolas-Hopkins-Kane-Karmalkar’20]: robust 
clustering algorithms assuming the GMM is equiweighted ( ) and 
fully clusterable


• Sum-of-Squares(SoS)-based clustering algorithm

wi = 1/k
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𝜇𝑖 𝜇𝑗

𝑁(𝜇𝑗, 𝐼)

𝜇𝑖 = 𝜇𝑗 𝜇𝑖 = 𝜇𝑗

𝑁(𝜇i, 𝐼)



Robust Clustering

• [Bakshi-Kothari’20, Diakonikolas-Hopkins-Kane-Karmalkar’20]: robust 
clustering algorithms assuming the GMM is equiweighted ( ) and 
fully clusterable


• Sum-of-Squares(SoS)-based clustering algorithm

wi = 1/k
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Mean-separated	 	      spectrally separated		 Frobenius separated

	 	 	 	                        

𝜇𝑖 𝜇𝑗

𝑁(𝜇𝑗, 𝐼)

𝜇𝑖 = 𝜇𝑗 𝜇𝑖 = 𝜇𝑗

𝑁(𝜇i, 𝐼)

Each pair of components have TV distance at least 1 − δk



Robust Partial Clustering
• Using the basic SoS-based clustering algorithm of [BK20] gives a partial clustering 

algorithm with exponential dependence on , the minimum mixing weight.


• To avoid this, we only do partial clustering if there is separation in Frobenius norm.


• Theorem: Robust partial clustering assuming Frobenius separation takes only 
 time and samples.


• Based on a new SoS relaxation and rounding

wmin

dO(1)polyk(1/ϵ)
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Frobenius separated

	 	 	 	                        

𝜇𝑖 = 𝜇𝑗
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Robust Partial Clustering

This is the only part in the 
algorithm using SoS



Non-SoS Robust Partial Clustering
• [Diakonikolas-Kane-Lee-Pensia-Pittas’23]: robust partial clustering 

algorithm assuming Frobenius separation


• Spectral based “filtering”


• SoS-free algorithm for robustly learning GMMs

26

Frobenius separated

	 	 	 	                        

𝜇𝑖 = 𝜇𝑗



Step II: Learn non-clusterable mixtures
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Robust Tensor decomposition

• List recovery of means and covariances of each non-clusterable 
components with the assumption that


• component covariances are close to identity

28



Robust Tensor decomposition

• List recovery of means and covariances of each non-clusterable 
components with the assumption that


• component covariances are close to identity

29

Non-Frobenius separable 

So we need to do partial clustering first!



Robust Tensor decomposition

• “Method of moments”: Hermite tensors


• [Kane’20]: An efficient algorithm for equiweighted mixtures of 2 
Gaussians using Hermite tensors

30

A variant of moments, can be 
estimated efficiently 



Learning Covariances up to low-rank error

• Random collapsing the 4th Hermite tensor recovers the covariances with low-rank 
terms


• 4th Hermite Tensor 


• 


• 


•

T4 = 𝔼[h4(X)] = Sym(
k

∑
i=1

wi(3Si ⊗ Si + 6Si ⊗ μ⊗2
i + μ⊗4

i ))
S′￼i = Si + μ⊗2

i , T′￼4 = ∑
i

wi(S′￼i ⊗ S′￼i)

T4 = Sym(
k

∑
i=1

wi(3S′￼i ⊗ S′￼i − 2μ⊗4
i ))

T4( ⋅ , ⋅ , x, y) = T′￼4( ⋅ , ⋅ , x, y)+ ∑
i

wi(S′￼i x) ⊗ (S′￼i y) + ∑
i

wi(S′￼i y) ⊗ (S′￼i x) + ∑
i

wi( − 2μ⊗2
i μT

i xμT
i y)

Si = Σi − I

Random Collapsing 31



Learning Covariances up to low-rank error

• Random collapsing the 4th Hermite tensor recovers the covariances with low-rank 
terms


• 4th Hermite Tensor 


• 


• 


•

T4 = 𝔼[h4(X)] = Sym(
k

∑
i=1

wi(3Si ⊗ Si + 6Si ⊗ μ⊗2
i + μ⊗4

i ))
S′￼i = Si + μ⊗2

i , T′￼4 = ∑
i

wi(S′￼i ⊗ S′￼i)

T4 = Sym(
k

∑
i=1

wi(3S′￼i ⊗ S′￼i − 2μ⊗4
i ))

T4( ⋅ , ⋅ , x, y) = T′￼4( ⋅ , ⋅ , x, y)+ ∑
i

wi(S′￼i x) ⊗ (S′￼i y) + ∑
i

wi(S′￼i y) ⊗ (S′￼i x) + ∑
i

wi( − 2μ⊗2
i μT

i xμT
i y)

Low-rank terms
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•

• Low-rank term, 

• Low-rank terms

• By collapsing  multiple times along random vector pairs , and taking 
random linear combinations, we get approximations to , up to low rank and 
small norm error terms.

Si = Σi − I

S′￼i = Si+ T′￼4 = ∑
i

wi(S′￼i ⊗ S′￼i)

T4( ⋅ , ⋅ , x, y) = T′￼4( ⋅ , ⋅ , x, y)+

T4 x, y
Si

Learning Covariances up to low-rank error
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Recover the low-rank terms and means

•  and eigenvectors of  are in low-dimensional space 


• Run [Moitra-Valiant’10] in low-dimensional space to recovery  and 

μi Si

μi Si

We can find the space by estimating 
the first  Hermite tensors4k

dim = polyk(1/ϵ)
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Overall Algoritm

35

𝜇𝑖 = 𝜇𝑗



Thank you!
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