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Gaussian Mixture Models

e Mixtures of Kk = 5 Gaussians in |
with probability w;, sample from
N(luia Zl)

» d: dimension
e k: number of components

e ;I Means

e 2. covariances



Learning Gaussian Mixture Models

e |nput: i.i.d. samples from a Gaussian mixture M

o Qutput: A Gaussian mixture M close to M in total variation distance
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]
dr(p,q) = = J | p(x) — q(x)| dx
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e natural info-theoretic measure

 Implies all parameter distance guarantees
[Liu-Moitra’21,Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’2?2]




Learning Gaussian Mixture Models

e |nput: i.i.d. samples from a Gaussian mixture M

e Qutput: A Gaussian mixture M close to M in total variation distance

[Pearson 1894]

[Dasgupta’98] Random Projection

[Arora-Kannan’01]

[Vempala-Wang’02] PCA

[Brubaker-Vempala’08] Isotropic PCA
[Kalai-Moitra-Valiant’09, Moitra-Valiant’10] Many 1-d Random Projections

[Belkin-Sinha’10]



Learning Gaussian Mixture Models

* [Moitra-Valiant’10, based on Kalai-M-V'09]: There is an algorithm that
2
earns k-GMMs up to 8-TV error in time (d/8)F"




What if Data has Outliers?

e Robust statistical models
 Tukey and Huber initiated work in 60’s

e Capture systematic error and adversarial outliers



Robust Learning

* |nput: a constant fraction € of data is arbitrarily corrupted by the adversary

 We know nothing about the corrupted data, except the number is bounded
e Goal: learn the distribution within total variation distance

* The error should be independent of dimension

» The optimal error is O(¢)

J\-I_ N

ideal model noise observed model




Robust Learning

* |nput: a constant fraction € of data is arbitrarily corrupted by the adversary

 We know nothing about the corrupted data, except the number is bounded

 Goal: learn the distribution within total variation distance captures the power of

adversarial corruption

* The error should be independent of dimension

» The optimal error is O(¢)

j\-l_ N
< > e/

ideal model noise observed model




Robustly Learning Gaussian Mixture Models

e Input: e-corrupted samples from a Gaussian mixture M

o Qutput: A Gaussian mixture M poly(e)-close to M in Total Variation
Distance

» [Moitra-Valiant’10] can only handle 1/poly(d) fraction of outliers
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Robustly Learning Gaussian Mixture Models

 Theorem |Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’'22]: An e€-robust
algorithm for learning arbitrary GMMs

. Samples: n > d”®poly,(1/¢)
» Time: poly(n)

e Error: poly,(¢) in TV distance
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Robustly Learning Gaussian Mixture Models

 Theorem |Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’'22]: An e€-robust
algorithm for learning arbitrary GMMs

e Samples: n > do(k)polyk(l/e)

No constraint on
» Time: poly(n)

minimum weight/
covariances

e Error: poly,(¢) in TV distance
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Robustly Learning Gaussian Mixture Models

 Theorem |Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’'22]: An e€-robust

algorithm for learning arbitrary GMMs Matches SQ lower

o« Samples: n > do(k>polyk(1 [€) bound In

[Diakonikolas-Kane-

e Error: poly,(¢) in TV distance
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Robustly Learning Gaussian Mixture Models

 Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]: An e€-robust
algorithm for learning arbitrary GMMs

e Samples: n > dO(k)polyk(l/e

Improves the non-robust
» Time: poly(n) running time of [Moitra-

| | Valiant’10] if ¢ = w(1/d)
e Error: poly,(¢) in TV distance
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Robustly Learning Gaussian Mixture Models

 Theorem |Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’'22]: An e€-robust
algorithm for learning arbitrary GMMs

Samples: n > d?®poly,(1/¢€) Time: poly(n) Error: poly,(€)

o Concurrent work [Liu-Moitra’21]: An e-robust parameter estimation
algorithm for GMMs s.t. all pairs > €, (1)-TV far

Samples: n > &' (Wnlmn)polyk(l/ €) | | Time: poly(n) Error: € i)
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Parameter Recovery

» Theorem: e-TV distance implies poly,(€)-component distance for
arbitrary Gaussian mixtures

* Relies on a key lemma from [Liu-Moitra’21]

 Generalizes the identifiability theorem in [Liu-Moitra’21]

e Corollary [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]: The same
algorithm in our main theorem also recovers the parameters/components.
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Overall Algoritm

Y Y

if components are | Make isotropic
Frobenius separate

! !

Tensor
Decomposition

Partial clustering — if components are

spectrally separate

4

Add to list of Spectrally

hypotheses Separate Thin
Components

v

3 p

Robust Tournament
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TV Distance Separation

 Two Gaussians are separated in TV distance iff one of the following holds:

Mean-separated spectrally separated  Frobenius separated
0! v
Jo:
UTZ U
N(u;, I) N(Mj, I)

10()

e.g., | |u—pu || >2 e.g., —IZ—I—VV e.g., = =1, z_
J & 8-/ \/5

18



\ Overall Algoritm
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Overall Algoritm
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Step I: Cluster while you can

......................

---------------------
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Robust Clustering

e [Bakshi-Kothari’20, Diakonikolas-Hopkins-Kane-Karmalkar’20]: robust

clustering algorithms assuming the GMM is equiweighted (w; = 1/k) and
fully clusterable

e« Sum-of-Squares(SoS)-based clustering algorithm

00 & ()

Mean-separated spectrally separated Frobenius separated




Robust Clustering

e [Bakshi-Kothari’20, Diakonikolas-Hopkins-Kane-Karmalkar’20]: robust

clustering algorithms assuming the GMM is equiweighted (w; = 1/k) and

fully clusterable Each pair of components have TV distance at least 1 — &,

. Sum—of—Squares(SoS)—based clustering algorithm

00 & ()

Mean- separated spectrally separated Frobenius separated




Robust Partial Clustering

e Using the basic SoS-based clustering algorithm of [BK20] gives a partial clustering
algorithm with exponential dependence on w_..., the minimum mixing weight.

* To avoid this, we only do partial clustering if there is separation in Frobenius norm.

 Theorem: Robust partial clustering assuming Frobenius separation takes only
dO(l)polyk(I/G) time and samples.

 Based on a new SoS relaxation and rounding
Hi = H;

Frobenius separated
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Robust Partial Clustering

‘Illllll.

Y Y

if components are 7| Make Isotropic

| 4

This is the only part in the

algorithm using SoS

Partial clustering

Tensor
Decomposition

— If components are
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Non-SoS Robust Partial Clustering

» |Diakonikolas-Kane-Lee-Pensia-Pittas’23]: robust partial clustering
algorithm assuming Frobenius separation

e Spectral based “filtering”

 S0S-free algorithm for robustly learning GMMs ( >

Frobenius separated
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Step ll: Learn non-clusterable mixtures

......................

Tensor
Decomposition

---------------------
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Robust Tensor decomposition

* List recovery of means and covariances of each non-clusterable
components with the assumption that

 component covariances are close to identity
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Robust Tensor decomposition

* List recovery of means and covariances of each non-clusterable
components with the assumption that

* | component covariances are close to identity

Non-Frobenius separable

So we need to do partial clustering first!
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Robust Tensor decomposition

A variant of moments, can be

 “Method of moments”: Hermite tensors estimated efficiently

e [Kane’20]: An efficient algorithm for equiweighted mixtures of 2
Gaussians using Hermite tensors
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Learning Covariances up to low-rank error

 Random collapsing the 4th Hermite tensor recovers the covariances with low-rank
terms

_ 4th Hermite Tensor T, = E[h,(X)] = Sym( Z wi(3S; ® S; + 65, ® //t®2 + ,u®4)>

et

L) =T 50+ ) wiSin) ® (Siy) + ), wilSiy) ® (Sjx) + Z wi( = 2u® ] xu] )

Random Collapsing o




Learning Covariances up to low-rank error

 Random collapsing the 4th Hermite tensor recovers the covariances with low-rank
terms

k
_ 4th Hermite Tensor T, = E[h,(X)] = Sym( Z wi(3S, & S, + 65, ® //ti(g’2 + ,ul.®4))
i=1

§i=, //tl.®2 wi(S! ® S))

l
|

k
1, = Sym( wi(3S, ® S, — 2/41.‘8’4)
i=1

l

T ) =Ty 0 )+ WS ® (S + ) wilSy) @ (S0 + ) wi = 24 xu]'y)
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Learning Covariances up to low-rank error

° Sl, — Sl+ Low-rank term, T/ — Z Wi(Si, ® Sl/)

o T,(-,-,x,y)=T4(-,,x,y)+Low-rank terms

By collapsing 1, multiple times along random vector pairs x, y, and taking

random linear combinations, we get approximations to $;, up to low rank and
small norm error terms.
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Recover the low-rank terms and means

» 4, and eigenvectors of §; are in low-dimensional space dim = poly,(1/¢)

We can find the space by estimating

the first 4k Hermite tensors

» Run [Moitra-Valiant’10] in low-dimensional space to recovery y; and .
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Overall Algoritm
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Thank you!



