
Robustly Learning of
Arbitrary Gaussian Mixtures

Ainesh Bakshi Ilias Diakonikolas Daniel KaneDaniel Kane Pravesh K. Kothari Santosh Vempala

He Jia

1

• Mixtures of Gaussians in :
with probability , sample from

• : dimension

• : number of components

• : weights

• : means

• : covariances

k = 5 ℝd

wi
N(μi, Σi)

d

k

wi

μi

Σi

Gaussian Mixture Models

2

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

• Input: i.i.d. samples from a Gaussian mixture

• Output: A Gaussian mixture close to in total variation distance

M

̂M M

Learning Gaussian Mixture Models

3

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

• Input: i.i.d. samples from a Gaussian mixture

• Output: A Gaussian mixture close to in total variation distance

M

̂M M

Learning Gaussian Mixture Models

4

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

dTV(p, q) =
1
2 ∫ |p(x) − q(x) | dx

• natural info-theoretic measure

• implies all parameter distance guarantees

[Liu-Moitra’21,Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]

• Input: i.i.d. samples from a Gaussian mixture

• Output: A Gaussian mixture close to in total variation distance

M

̂M M

Learning Gaussian Mixture Models

5

[Pearson 1894]

[Dasgupta’98] Random Projection
[Arora-Kannan’01]
[Vempala-Wang’02] PCA
[Brubaker-Vempala’08] Isotropic PCA
…

[Kalai-Moitra-Valiant’09, Moitra-Valiant’10] Many 1-d Random Projections
[Belkin-Sinha’10]

…

• [Moitra-Valiant’10, based on Kalai-M-V’09]: There is an algorithm that
learns -GMMs up to -TV error in time k δ (d/δ)kO(k2)

Learning Gaussian Mixture Models

6

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

What if Data has Outliers?

• Robust statistical models

• Tukey and Huber initiated work in 60’s

• Capture systematic error and adversarial outliers

7

Robust Learning
• Input: a constant fraction of data is arbitrarily corrupted by the adversary

• We know nothing about the corrupted data, except the number is bounded

• Goal: learn the distribution within total variation distance

• The error should be independent of dimension

• The optimal error is

ϵ

O(ϵ)

8

Robust Learning
• Input: a constant fraction of data is arbitrarily corrupted by the adversary

• We know nothing about the corrupted data, except the number is bounded

• Goal: learn the distribution within total variation distance

• The error should be independent of dimension

• The optimal error is

ϵ

O(ϵ)

9

captures the power of
adversarial corruption

Robustly Learning Gaussian Mixture Models

10

• Input: -corrupted samples from a Gaussian mixture

• Output: A Gaussian mixture -close to in Total Variation
Distance

• [Moitra-Valiant’10] can only handle fraction of outliers

ϵ M
̂M poly(ϵ) M

1/poly(d)

Robustly Learning Gaussian Mixture Models

11

• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]: An -robust
algorithm for learning arbitrary GMMs

• Samples:

• Time:

• Error: in TV distance

ϵ

n ≥ dO(k)polyk(1/ϵ)

poly(n)

polyk(ϵ)

Robustly Learning Gaussian Mixture Models

12

• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]: An -robust
algorithm for learning arbitrary GMMs

• Samples:

• Time:

• Error: in TV distance

ϵ

n ≥ dO(k)polyk(1/ϵ)

poly(n)

polyk(ϵ)

No constraint on
minimum weight/

covariances

Robustly Learning Gaussian Mixture Models

13

• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]: An -robust
algorithm for learning arbitrary GMMs

• Samples:

• Time:

• Error: in TV distance

ϵ

n ≥ dO(k)polyk(1/ϵ)

poly(n)

polyk(ϵ)

Matches SQ lower
bound in

[Diakonikolas-Kane-
Stewart’18]

Robustly Learning Gaussian Mixture Models

14

• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]: An -robust
algorithm for learning arbitrary GMMs

• Samples:

• Time:

• Error: in TV distance

ϵ

n ≥ dO(k)polyk(1/ϵ)

poly(n)

polyk(ϵ)

Improves the non-robust
running time of [Moitra-
Valiant’10] if ϵ = ω(1/d)

Robustly Learning Gaussian Mixture Models

15

• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]: An -robust
algorithm for learning arbitrary GMMs

• Concurrent work [Liu-Moitra’21]: An -robust parameter estimation
algorithm for GMMs s.t. all pairs -TV far

ϵ

ϵ
≥ Ωk(1)

Samples: n ≥ dO(k)polyk(1/ϵ) Error: polyk(ϵ)Time: poly(n)

Samples: n ≥ df(1
wmin

)polyk(1/ϵ) Error: ϵ f(1
wmin

)Time: poly(n)

Parameter Recovery

16

• Theorem: -TV distance implies -component distance for
arbitrary Gaussian mixtures

• Relies on a key lemma from [Liu-Moitra’21]

• Generalizes the identifiability theorem in [Liu-Moitra’21]

• Corollary [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala’22]: The same
algorithm in our main theorem also recovers the parameters/components.

ϵ polyk(ϵ)

Overall Algoritm

17

TV Distance Separation
• Two Gaussians are separated in TV distance iff one of the following holds:

18

𝜇𝑖 𝜇𝑗

𝑁(𝜇𝑗, 𝐼)

e.g., 𝜇𝑖 − 𝜇𝑗 ≫ 2

𝜇𝑖 = 𝜇𝑗

e.g., , Σi = I Σj = I − vv⊤

𝜇𝑖 = 𝜇𝑗

e.g., Σ𝑖 = 𝐼, Σ𝑗 = (1 −
100

𝑑)𝐼

Mean-separated		 spectrally separated		 Frobenius separated

 ∃𝑣:
𝑣𝑇Σ𝑖𝑣
𝑣𝑇Σ𝑗𝑣

> 𝑐
𝑁(𝜇i, 𝐼)

Overall Algoritm

19

𝜇𝑖 = 𝜇𝑗

𝜇𝑖 = 𝜇𝑗

Overall Algoritm

20

Our main tools

Step I: Cluster while you can

21

Robust Clustering

• [Bakshi-Kothari’20, Diakonikolas-Hopkins-Kane-Karmalkar’20]: robust
clustering algorithms assuming the GMM is equiweighted () and
fully clusterable

• Sum-of-Squares(SoS)-based clustering algorithm

wi = 1/k

22

Mean-separated	 	 spectrally separated		 Frobenius separated

𝜇𝑖 𝜇𝑗

𝑁(𝜇𝑗, 𝐼)

𝜇𝑖 = 𝜇𝑗 𝜇𝑖 = 𝜇𝑗

𝑁(𝜇i, 𝐼)

Robust Clustering

• [Bakshi-Kothari’20, Diakonikolas-Hopkins-Kane-Karmalkar’20]: robust
clustering algorithms assuming the GMM is equiweighted () and
fully clusterable

• Sum-of-Squares(SoS)-based clustering algorithm

wi = 1/k

23

Mean-separated	 	 spectrally separated		 Frobenius separated

𝜇𝑖 𝜇𝑗

𝑁(𝜇𝑗, 𝐼)

𝜇𝑖 = 𝜇𝑗 𝜇𝑖 = 𝜇𝑗

𝑁(𝜇i, 𝐼)

Each pair of components have TV distance at least 1 − δk

Robust Partial Clustering
• Using the basic SoS-based clustering algorithm of [BK20] gives a partial clustering

algorithm with exponential dependence on , the minimum mixing weight.

• To avoid this, we only do partial clustering if there is separation in Frobenius norm.

• Theorem: Robust partial clustering assuming Frobenius separation takes only
 time and samples.

• Based on a new SoS relaxation and rounding

wmin

dO(1)polyk(1/ϵ)

24
Frobenius separated

𝜇𝑖 = 𝜇𝑗

25

Robust Partial Clustering

This is the only part in the
algorithm using SoS

Non-SoS Robust Partial Clustering
• [Diakonikolas-Kane-Lee-Pensia-Pittas’23]: robust partial clustering

algorithm assuming Frobenius separation

• Spectral based “filtering”

• SoS-free algorithm for robustly learning GMMs

26

Frobenius separated

𝜇𝑖 = 𝜇𝑗

Step II: Learn non-clusterable mixtures

27

Robust Tensor decomposition

• List recovery of means and covariances of each non-clusterable
components with the assumption that

• component covariances are close to identity

28

Robust Tensor decomposition

• List recovery of means and covariances of each non-clusterable
components with the assumption that

• component covariances are close to identity

29

Non-Frobenius separable

So we need to do partial clustering first!

Robust Tensor decomposition

• “Method of moments”: Hermite tensors

• [Kane’20]: An efficient algorithm for equiweighted mixtures of 2
Gaussians using Hermite tensors

30

A variant of moments, can be
estimated efficiently

Learning Covariances up to low-rank error

• Random collapsing the 4th Hermite tensor recovers the covariances with low-rank
terms

• 4th Hermite Tensor

•

•

•

T4 = 𝔼[h4(X)] = Sym(
k

∑
i=1

wi(3Si ⊗ Si + 6Si ⊗ μ⊗2
i + μ⊗4

i))
S′ i = Si + μ⊗2

i , T′ 4 = ∑
i

wi(S′ i ⊗ S′ i)

T4 = Sym(
k

∑
i=1

wi(3S′ i ⊗ S′ i − 2μ⊗4
i))

T4(⋅ , ⋅ , x, y) = T′ 4(⋅ , ⋅ , x, y)+ ∑
i

wi(S′ i x) ⊗ (S′ i y) + ∑
i

wi(S′ i y) ⊗ (S′ i x) + ∑
i

wi(− 2μ⊗2
i μT

i xμT
i y)

Si = Σi − I

Random Collapsing 31

Learning Covariances up to low-rank error

• Random collapsing the 4th Hermite tensor recovers the covariances with low-rank
terms

• 4th Hermite Tensor

•

•

•

T4 = 𝔼[h4(X)] = Sym(
k

∑
i=1

wi(3Si ⊗ Si + 6Si ⊗ μ⊗2
i + μ⊗4

i))
S′ i = Si + μ⊗2

i , T′ 4 = ∑
i

wi(S′ i ⊗ S′ i)

T4 = Sym(
k

∑
i=1

wi(3S′ i ⊗ S′ i − 2μ⊗4
i))

T4(⋅ , ⋅ , x, y) = T′ 4(⋅ , ⋅ , x, y)+ ∑
i

wi(S′ i x) ⊗ (S′ i y) + ∑
i

wi(S′ i y) ⊗ (S′ i x) + ∑
i

wi(− 2μ⊗2
i μT

i xμT
i y)

Low-rank terms

32

•

• Low-rank term,

• Low-rank terms

• By collapsing multiple times along random vector pairs , and taking
random linear combinations, we get approximations to , up to low rank and
small norm error terms.

Si = Σi − I

S′ i = Si+ T′ 4 = ∑
i

wi(S′ i ⊗ S′ i)

T4(⋅ , ⋅ , x, y) = T′ 4(⋅ , ⋅ , x, y)+

T4 x, y
Si

Learning Covariances up to low-rank error

33

Recover the low-rank terms and means

• and eigenvectors of are in low-dimensional space

• Run [Moitra-Valiant’10] in low-dimensional space to recovery and

μi Si

μi Si

We can find the space by estimating
the first Hermite tensors4k

dim = polyk(1/ϵ)

34

Overall Algoritm

35

𝜇𝑖 = 𝜇𝑗

Thank you!

36

