Robustly Learning of Arbitrary Gaussian Mixtures

Ainesh Bakshi

He Jia

Ilias Diakonikolas

Daniel Kane

Pravesh K. Kothari

Santosh Vempala

Gaussian Mixture Models

 C_{5}

- Mixtures of k = 5 Gaussians in \mathbb{R}^d : with probability w_i , sample from $N(\mu_i, \Sigma_i)$
- *d*: dimension
- k: number of components
- *w_i*: weights
- μ_i : means
- Σ_i : covariances

- Input: i.i.d. samples from a Gaussian mixture M
- Output: A Gaussian mixture \widehat{M} close to M in total variation distance

- Input: i.i.d. samples from a Gaussian mixture M
- Output: A Gaussian mixture \widehat{M} close to M in total variation distance

$$d_{TV}(p,q) = \frac{1}{2} \int |p(x) - q(x)| \, dx$$

C natural info-theoretic measure implies all parameter distance guarantees [Liu-Moitra'21, Bakshi-Diakonikolas-J-Kane-Kothari-Vempala'22]

- Input: i.i.d. samples from a Gaussian mixture M
- Output: A Gaussian mixture \widehat{M} close to M in total variation distance

. . .

 $\bullet \bullet \bullet$

[Pearson 1894]

[Dasgupta'98] [Arora-Kannan'01] [Vempala-Wang'02] [Brubaker-Vempala'08]

[Kalai-Moitra-Valiant'09, Moitra-Valiant'10] Many 1-d Random Projections [Belkin-Sinha'10]

Random Projection

PCA **Isotropic PCA**

learns k-GMMs up to δ -TV error in time $(d/\delta)^{k^{O(k^2)}}$

[Moitra-Valiant'10, based on Kalai-M-V'09]: There is an algorithm that

What if Data has Outliers?

- Robust statistical models
 - Tukey and Huber initiated work in 60's
 - Capture systematic error and adversarial outliers

Robust Learning

- Input: a constant fraction ϵ of data is arbitrarily corrupted by the adversary
 - We know nothing about the corrupted data, except the number is bounded
- Goal: learn the distribution within total variation distance
 - The error should be independent of dimension
 - The optimal error is $O(\epsilon)$

Robust Learning

- Input: a constant fraction ϵ of data is arbitrarily corrupted by the adversary
 - We know nothing about the corrupted data, except the number is bounded
- Goal: learn the distribution within total variation distance
 - The error should be independent of dimension
 - The optimal error is $O(\epsilon)$

captures the power of adversarial corruption

- Input: ϵ -corrupted samples from a Gaussian mixture M
- Output: A Gaussian mixture \widehat{M} poly(ϵ)-close to M in Total Variation Distance

• [Moitra-Valiant'10] can only handle 1/poly(d) fraction of outliers

- algorithm for learning arbitrary GMMs
 - Samples: $n \ge d^{O(k)} \operatorname{poly}_k(1/\epsilon)$
 - Time: poly(n)
 - Error: $poly_k(\epsilon)$ in TV distance

• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala'22]: An ϵ -robust

- algorithm for learning arbitrary GMMs
 - Samples: $n \ge d^{O(k)} \operatorname{poly}_k(1/\epsilon)$
 - Time: poly(n)
 - Error: $poly_k(\epsilon)$ in TV distance

• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala'22]: An ϵ -robust

No constraint on minimum weight/ covariances

- algorithm for learning arbitrary GMMs
 - Samples: $n \ge d^{O(k)} \operatorname{poly}_k(1/\epsilon)$
 - Time: poly(n)
 - Error: $poly_k(\epsilon)$ in TV distance

• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala'22]: An ϵ -robust

Matches SQ lower bound in [Diakonikolas-Kane-Stewart'18]

- algorithm for learning arbitrary GMMs
 - Samples: $n \ge d^{O(k)} \operatorname{poly}_k(1/\epsilon)$
 - Time: poly(n)
 - Error: $poly_k(\epsilon)$ in TV distance

• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala'22]: An ϵ -robust

Improves the non-robust running time of [Moitra-Valiant'10] if $\epsilon = \omega(1/d)$

• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala'22]: An *∈*-robust algorithm for learning arbitrary GMMs

Samples: $n \ge d^{O(k)} \operatorname{poly}_k(1/\epsilon)$

- Concurrent work [Liu-Moitra'21]: An ϵ -robust parameter estimation algorithm for GMMs s.t. all pairs $\geq \Omega_k(1)$ -TV far

Samples: $n \ge d^{f(\frac{1}{w_{\min}})} \operatorname{poly}_k(1/\epsilon)$

Time: poly(*n*)

Error: $poly_k(\epsilon)$

Parameter Recovery

- Theorem: ϵ -TV distance implies $\operatorname{poly}_k(\epsilon)$ -component distance for arbitrary Gaussian mixtures
 - Relies on a key lemma from [Liu-Moitra'21]
 - Generalizes the identifiability theorem in [Liu-Moitra'21]

• Corollary [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala'22]: The same algorithm in our main theorem also recovers the parameters/components.

Overall Algoritm

TV Distance Separation

• Two Gaussians are separated in TV distance iff one of the following holds:

Overall Algoritm

Step I: Cluster while you can

- [Bakshi-Kothari'20, Diakonikolas-Hopkins-Kane-Karmalkar'20]: robust clustering algorithms assuming the GMM is equiweighted ($w_i = 1/k$) and fully clusterable
 - Sum-of-Squares(SoS)-based clustering algorithm

Robust Clustering

- [Bakshi-Kothari'20, Diakonikolas-Hopkins-Kane-Karmalkar'20]: robust clustering algorithms assuming the GMM is equiweighted ($w_i = 1/k$) and fully clusterable Each pair of components have TV distance at least $1 - \delta_k$
 - Sum-of-Squares(SoS)-based clustering algorithm

Robust Clustering

Robust Partial Clustering

- Using the basic SoS-based clustering algorithm of [BK20] gives a partial clustering algorithm with exponential dependence on w_{\min} , the minimum mixing weight.
- To avoid this, we only do partial clustering if there is separation in Frobenius norm.
- Theorem: Robust partial clustering assuming Frobenius separation takes only $d^{O(1)} \text{poly}_k(1/\epsilon)$ time and samples.
 - Based on a new SoS relaxation and rounding

Robust Partial Clustering

Non-Sos Robust Partial Clustering

- [Diakonikolas-Kane-Lee-Pensia-Pittas'23]: robust partial clustering algorithm assuming Frobenius separation
 - Spectral based "filtering"
 - SoS-free algorithm for robustly learning GMMs

Step II: Learn non-clusterable mixtures

Robust Tensor decomposition

- List recovery of means and covariances of each non-clusterable components with the assumption that
 - component covariances are close to identity

Robust Tensor decomposition

- List recovery of means and covariances of each non-clusterable components with the assumption that
 - component covariances are close to identity

Non-Frobenius separable

So we need to do partial clustering first!

Robust Tensor decomposition

- "Method of moments": Hermite tensors
 - [Kane'20]: An efficient algorithm for equiweighted mixtures of 2 Gaussians using Hermite tensors

A variant of moments, can be estimated efficiently

Learning Covariances up to low-rank error

 Random collapsing the 4th Hermite tensor recovers the covariances with low-rank terms

4th Hermite Tensor $T_4 = \mathbb{E}[h_4(X)] = \operatorname{Sym}\left(\int_{i}^{i} f_{i}(X) f_{i}(X) \right)$

•
$$S'_i = S_i + \mu_i^{\otimes 2}, T'_4 = \sum_i w_i (S'_i \otimes S'_i)$$

•
$$T_4 = \operatorname{Sym}\left(\sum_{i=1}^k w_i (3S'_i \otimes S'_i - 2\mu_i^{\otimes 4})\right)$$

• $T_4(\cdot, \cdot, x, y) = T'_4(\cdot, \cdot, x, y) + \sum w_i(S'_i x) \otimes (S'_i x) + \sum w_i(S'_i x) + \sum w_i(S'_i x) \otimes (S'_i x) + \sum w_i(S'_i x) \otimes (S'_i x) + \sum w_i(S'_i x) \otimes (S'_i x) + \sum w_i(S'_i x) + \sum$

Random Collapsing

$$\sum_{i=1}^{k} w_i (3S_i \otimes S_i + 6S_i \otimes \mu_i^{\otimes 2} + \mu_i^{\otimes 4}) \right)$$
$$S_i = \sum_i - I$$

$$w_i(S'_i y) \otimes (S'_i x) + \sum_i w_i(-2\mu_i^{\otimes 2}\mu_i^T x\mu_i^T y)$$

Learning Covariances up to low-rank error

 Random collapsing the 4th Hermite tensor recovers the covariances with low-rank terms

4th Hermite Tensor $T_4 = \mathbb{E}[h_4(X)] = \text{Sym}($

$$S'_i = S_i + \mu_i^{\otimes 2} T'_4 = \sum_i w_i (S'_i \otimes S'_i)$$

$$T_4 = \operatorname{Sym}\left(\sum_{i=1}^k w_i (3S'_i \otimes S'_i - 2\mu_i^{\otimes 4})\right)$$

$$\sum_{i=1}^{k} w_i (3S_i \otimes S_i + 6S_i \otimes \mu_i^{\otimes 2} + \mu_i^{\otimes 4}) \right)$$

Learning Covariances up to low-rank error

- $S_i = \Sigma_i I$
- $S'_i = S_i + \text{Low-rank term}, T'_4 = \sum w_i (S'_i \otimes S'_i)$
- $T_4(\cdot, \cdot, x, y) = T'_4(\cdot, \cdot, x, y) + \text{Low-rank terms}$
- small norm error terms.

• By collapsing T_4 multiple times along random vector pairs x, y, and taking random linear combinations, we get approximations to S_i , up to low rank and

Recover the low-rank terms and means

• μ_i and eigenvectors of S_i are in low-dimensional space

$$dim = poly_k(1/\epsilon)$$

We can find the space by estimating the first 4k Hermite tensors

• Run [Moitra-Valiant'10] in low-dimensional space to recovery μ_i and S_i

Overall Algoritm

Thank you!