Robustly Learning of Arbitrary Gaussian Mixtures

He Jia

Ainesh Bakshi Ilias Diakonikolas Daniel Kane Pravesh K. Kothari Santosh Vempala

Gaussian Mixture Models

 C_{5}

- Mixtures of $k = 5$ Gaussians in \mathbb{R}^d . with probability w_i , sample from $N(\mu_i, \Sigma_i)$
- d: dimension
- k : number of components
- \bullet W_i : weights
- \cdot μ_i *:* means
- Σ_i : covariances

Learning Gaussian Mixture Models

- Input: i.i.d. samples from a Gaussian mixture *M*
- Output: A Gaussian mixture M close to M in total variation distance

Learning Gaussian Mixture Models

- Input: i.i.d. samples from a Gaussian mixture *M*
- Output: A Gaussian mixture M close to M in total variation distance

$$
d_{TV}(p,q) = \frac{1}{2} \int |p(x) - q(x)| dx
$$

5 • natural info-theoretic measure implies all parameter distance guarantees [Liu-Moitra'21,Bakshi-Diakonikolas-J-Kane-Kothari-Vempala'22]

Learning Gaussian Mixture Models

- Input: i.i.d. samples from a Gaussian mixture *M*
- Output: A Gaussian mixture M close to M in total variation distance

[Pearson 1894]

[Kalai-Moitra-Valiant'09, Moitra-Valiant'10] Many 1-d Random Projections **[Belkin-Sinha'10]**

[Dasgupta'98] Random Projection [Arora-Kannan'01] [Vempala-Wang'02] PCA [Brubaker-Vempala'08] Isotropic PCA

…

…

learns *k*-GMMs up to *δ*-TV error in time (*d*/*δ*)

Learning Gaussian Mixture Models

• [Moitra-Valiant'10, *based on* Kalai-M-V'09]: There is an algorithm that $k^{O(k^2)}$

What if Data has Outliers?

- Robust statistical models
	- Tukey and Huber initiated work in 60's
	- Capture systematic error and adversarial outliers

Robust Learning

- Input: a constant fraction ϵ of data is arbitrarily corrupted by the adversary
	- We know nothing about the corrupted data, except the number is bounded
- Goal: learn the distribution within total variation distance
	- The error should be independent of dimension
	- The optimal error is *O*(*ϵ*)

Robust Learning

- Input: a constant fraction ϵ of data is arbitrarily corrupted by the adversary
	- We know nothing about the corrupted data, except the number is bounded
- Goal: learn the distribution within total variation distance
	- The error should be independent of dimension
	- The optimal error is *O*(*ϵ*)

captures the power of adversarial corruption

- Input: *c*-corrupted samples from a Gaussian mixture M
- Output: A Gaussian mixture M $\operatorname{poly}(\epsilon)$ -close to M in Total Variation **Distance**

• [Moitra-Valiant'10] can only handle $1/poly(d)$ fraction of outliers

- algorithm for learning arbitrary GMMs
	- Samples: $n \geq d^{O(k)}$ $\operatorname{poly}_k(1/\epsilon)$
	- Time: poly(*n*)
	- Error: $poly_k(\epsilon)$ in TV distance

• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala'22]: An ϵ -robust

- algorithm for learning arbitrary GMMs
	- Samples: $n \geq d^{O(k)}$ $\operatorname{poly}_k(1/\epsilon)$
	- Time: poly(*n*)
	- Error: $poly_k(\epsilon)$ in TV distance

• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala'22]: An ϵ -robust

No constraint on minimum weight/ covariances

- Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala'22]: An ϵ -robust algorithm for learning arbitrary GMMs
	- Samples: $n \geq d^{O(k)}$ $\operatorname{poly}_k(1/\epsilon)$
	- Time: poly(*n*)
	- Error: $poly_k(\epsilon)$ in TV distance

Matches SQ lower bound in [Diakonikolas-Kane-Stewart'18]

- algorithm for learning arbitrary GMMs
	- Samples: $n \geq d^{O(k)}$ poly*k*(1/*ϵ*)
	- Time: poly(*n*)
	- Error: $poly_k(\epsilon)$ in TV distance

• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala'22]: An ϵ -robust

Improves the non-robust running time of [Moitra-Valiant'10] if $\epsilon = \omega(1/d)$

• Theorem [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala'22]: An ϵ -robust algorithm for learning arbitrary GMMs

Samples: $n \geq d^{O(k)}$ poly_k $(1/\epsilon)$

• Concurrent work [Liu-Moitra'21]: An ϵ -robust parameter estimation algorithm for GMMs s.t. all pairs $\ge \Omega_k(1)$ -TV far

Samples: $n \ge d^{\int \left(\frac{1}{w_m}\right)}$

 $\lceil \text{Time: poly}(n) \rceil$ | Error: $\text{poly}_k(\epsilon)$

Parameter Recovery

- Theorem: ϵ -TV distance implies $\mathrm{poly}_k(\epsilon)$ -component distance for arbitrary Gaussian mixtures
	- Relies on a key lemma from [Liu-Moitra'21]
	- Generalizes the identifiability theorem in [Liu-Moitra'21]

• Corollary [Bakshi-Diakonikolas-J-Kane-Kothari-Vempala'22]: The same algorithm in our main theorem also recovers the parameters/components.

Overall Algoritm

TV Distance Separation

• Two Gaussians are separated in TV distance iff one of the following holds:

Overall Algoritm

Step I: Cluster while you can

21

Robust Clustering

- [Bakshi-Kothari'20, Diakonikolas-Hopkins-Kane-Karmalkar'20]: robust clustering algorithms assuming the GMM is equiweighted ($w_{\widetilde t} = 1/k$) and fully clusterable
	- Sum-of-Squares(SoS)-based clustering algorithm

Robust Clustering

- [Bakshi-Kothari'20, Diakonikolas-Hopkins-Kane-Karmalkar'20]: robust clustering algorithms assuming the GMM is equiweighted ($w_i = 1/k$) and fully clusterable Each pair of components have TV distance at least $1 - \delta_k$
	- Sum-of-Squares(SoS)-based clustering algorithm

Robust Partial Clustering

- Using the basic SoS-based clustering algorithm of [BK20] gives a partial clustering algorithm with exponential dependence on $w_{\min}^{},$ the minimum mixing weight.
- To avoid this, we only do partial clustering if there is separation in Frobenius norm.
- Theorem: Robust partial clustering assuming Frobenius separation takes only $d^{O(1)}$ poly_k $(1/\epsilon)$ time and samples. $\operatorname{poly}_k(1/\epsilon)$
	- Based on a new SoS relaxation and rounding

Robust Partial Clustering

Non-SoS Robust Partial Clustering

- [Diakonikolas-Kane-Lee-Pensia-Pittas'23]: robust partial clustering algorithm assuming Frobenius separation
	- Spectral based "filtering"
	- SoS-free algorithm for robustly learning GMMs

Step II: Learn non-clusterable mixtures

Robust Tensor decomposition

- List recovery of means and covariances of each non-clusterable components with the assumption that
	- component covariances are close to identity

Robust Tensor decomposition

- List recovery of means and covariances of each non-clusterable components with the assumption that
	- component covariances are close to identity

Non-Frobenius separable

So we need to do partial clustering first!

Robust Tensor decomposition

- "Method of moments": Hermite tensors
	- [Kane'20]: An efficient algorithm for equiweighted mixtures of 2 Gaussians using Hermite tensors

A variant of moments, can be estimated efficiently

Learning Covariances up to low-rank error

• 4 th Hermite Tensor $T_4 = \mathbb{E}[h_4(X)] = \textrm{Sym}\Big\{0\}$

• Random collapsing the 4th Hermite tensor recovers the covariances with low-rank

terms

$$
\sum_{i} S'_{i} = S_{i} + \mu_{i}^{\otimes 2}, T'_{4} = \sum_{i} w_{i}(S'_{i} \otimes S'_{i})
$$

$$
\sum_{i=1}^{k} w_i (3S_i' \otimes S_i' - 2\mu_i^{\otimes 4})
$$

• $T_4(\cdot, \cdot, x, y) = T'_4(\cdot, \cdot, x, y) + \sum w_i(S'_i x) \otimes (S'_i y) + \sum w_i$ *i i*

Random Collapsing and the set of th

$$
\sum_{i=1}^{k} w_i (3S_i \otimes S_i + 6S_i \otimes \mu_i^{\otimes 2} + \mu_i^{\otimes 4})
$$

$$
S_i = \sum_i -I
$$

$$
v_i(S_i'y) \otimes (S_i'x) + \sum_i w_i(-2\mu_i^{\otimes 2}\mu_i^T x \mu_i^T y)
$$

Learning Covariances up to low-rank error

• 4 th Hermite Tensor $T_4 = \mathbb{E}[h_4(X)] = \textrm{Sym}\Big\{0\}$

• Random collapsing the 4th Hermite tensor recovers the covariances with low-rank terms

$$
\sum_{i=1}^{k} w_i (3S_i \otimes S_i + 6S_i \otimes \mu_i^{\otimes 2} + \mu_i^{\otimes 4})
$$

$$
S'_{i} = S_{i} + \mu_{i}^{\otimes 2} \mathcal{F}'_{i} = \sum_{i} w_{i} (S'_{i} \otimes S'_{i})
$$

$$
\sum_{i=1}^{k} W_i(3S_i' \otimes S_i' - 2\mu_i^{\otimes 4})
$$

$$
\int_{i} T_4(\cdot,\cdot,x,y) = T'_4(\cdot,\cdot,x,y) + \left[\sum_i w_i(S'_i x) \otimes (S'_i y) + \sum_i w_i(S'_i y) \otimes (S'_i y) \right]
$$

- $S_i = \sum_i -I$
- $S'_i = S_i +$ Low-rank term, $T'_4 = \sum w_i (S'_i \otimes S'_i)$ *i*
- $T_4(\cdot, \cdot, x, y) = T'_4(\cdot, \cdot, x, y) +$ Low-rank terms
- random linear combinations, we get approximations to S_i , up to low rank and small norm error terms.

)

• By collapsing T_4 multiple times along random vector pairs x, y , and taking

Learning Covariances up to low-rank error

Recover the low-rank terms and means

• μ_i and eigenvectors of S_i are in low-dimensional space

We can find the space by estimating the first 4*k* Hermite tensors

• Run [Moitra-Valiant'10] in low-dimensional space to recovery μ_i and S_i

$$
\dim = \mathrm{poly}_k(1/\epsilon)
$$

Overall Algoritm

Thank you!