Regression in the Presence of Additive Oblivious Corruptions

Sushrut Karmalkar UW-Madison

Linear Regression

Given: *n* samples
$$
\{(x_1, y_1), ..., (x_n, y_n)\}\in \mathbb{R}^d \times \mathbb{R}
$$
 s.t.
 $y_i = w^* \cdot x_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

Goal: Recover w^* .

Classic approach: Least Squares Estimator Return the minimizer of $\frac{1}{n} \sum_{i=1}^{n} (y_i - w \cdot x_i)^2$

Linear Regression

Issue with least squares: Sensitive to even a single outlier!

Can we design efficient and robust estimators?

How do we model corruption?

Huber Contamination Model:

A set of n samples is η **-corrupted** if they are drawn from $(1 - \eta)\mathscr{I} + \eta\mathscr{O}$ where,

- \bullet $\mathcal I$ is the ``inlier distribution'' from some known class of distributions
- \bullet $\mathcal O$ is an arbitrary and unknown outlier distribution.

Information Theoretic Optimal Error: $||w - w^*|| \leq O(\sigma \eta)$

Consistency

Consistency: More data → Improved Accuracy

Is there a setting that allows for the following simultaneously?

- Arbitrary (label) outliers
- **Consistency**
- **Efficient recovery**

Oblivious Noise

Oblivious Noise

Given: Independent samples
$$
\{(x_1, y_1), ..., (x_n, y_n)\}\in \mathbb{R}^d \times \mathbb{R}
$$
.
\n
$$
y_i = w^* \cdot x_i + \epsilon_i + \xi_i
$$
\nwhere $\xi_i \sim D_{\xi}, \epsilon_i \sim \mathcal{N}(0, \sigma^2)$ drawn i.i.d. and $Pr[\xi_i = 0] \ge \beta$
\n**Goal:** Recovery \hat{w} s.t. $\mathbb{E}_x[(\hat{w} \cdot x - w^* \cdot x)^2]$ is small

Captures a wide range of heavy-tailed and asymmetric noises!

Parameters of Interest

- Inlier probability (*β*)
- Sample complexity (*n*) and runtime
- Final error
- **•** Assumptions on noise (ξ) and features.

Problems Studied

Today

No proofs :(

Discuss simple algorithms and some of the core ideas involved

Outline

• Linear Regression with Oblivious Noise

- Hard-thresholding Based Algorithm
- Simple(r) algorithms for Gaussian Features
- **Learning GLMs with Oblivious Noise**

Biased Survey: Linear Regression

- [Bhatia-Jain-Kamalaruban-Kar'17]: $\beta \geq 0.99$, $n = \tilde{O}(d)$ and X satisfies some strong-convexity and smoothness conditions.
- [Suggala-Bhatia-Ravikumar-Jain'19]: $\beta > 1/\log \log(n)$, $n = \tilde{O}(d)$ same assumptions.
- [Tsakonas-Jaldén-Sidiropoulos-Ottersten'14]: $\beta > 1/\sqrt{n}$, but $n = \tilde{O}(d^2)$ and $x \sim \mathcal{N}(0, I_d)$. By minimizing Huber loss.
- [Pesme-Flammarion'20]: $x \sim \mathcal{N}(0, I_d)$. First algorithm in the streaming setting (SGD on ℓ_1 -loss).
- [d'Orsi-Novikov-Steurer'21]: For symmetric oblivious noise and more general feature distributions.
- [Norman-Weinberger-Levy'22]: First analysis for $\Sigma \geq 0$.

Summary

Also results for sparse signals and showing optimality.

Also for more general classes *

Today

Further assume features are Gaussian

Hard-thresholding Based Algorithm

BJKK Theorem

Features: $x \sim \mathcal{N}(0,\Sigma)$ Noise: $Pr[\xi = 0] \ge \beta \ge 0.99$

Theorem [BJKK'17]: For any $\epsilon, \delta > 0$ and $\beta > 1 - 10^{-5}$, there is a polynomial time algorithm that draws n samples, runs in time poly(*d*, *n*, log ∥*ξ*∥, log(1/ε)) and recovers \hat{w} satisfying ̂

$$
\|\hat{w} - w^*\| \le \epsilon + \tilde{O}_{d,\delta}\left(\frac{\sigma}{\sqrt{\lambda_{min}(\Sigma)}} \cdot \sqrt{\frac{d}{n}}\right)
$$

Runtime depends on $log(||\xi||_2)$ Improved in their follow-up work.

[Bhatia-Jain-Kamalaruban-Kar'17]

BJKK Algorithm

Approach: Recover the noise as well as signal.

Problem:
$$
\min_{w \in \mathbb{R}^d, \|\xi\|_0 \le (1-\beta)n} \|X^{\top}w - (y - \xi)\|_2^2 \equiv (1)
$$

For a fixed ξ the minimizing *w* is $w = (XX^T)^{-1}X(y - \xi)$. $\text{Let } P_X := X^{\top} (XX^{\top})^{-1} X \text{ and } f(\xi) := ||(I - P_X)(y - \xi)||_2^2$

$$
(1) \equiv \min_{\|\xi\|_0 \le (1-\beta)n} f(\xi) \equiv \min_{\|\xi\|_0 \le (1-\beta)n} ||(I - P_X)(y - \xi)||_2^2
$$

Algorithm: Gradient-descent on *f*(*ξ*) with hard thresholding

BJKK Algorithm

For $v \in \mathbb{R}^n$, HT_k(*v*) zeros out the smallest $n - k$ entries of *v*

$$
\xi_0 = 0, P_X = X^{\top} (XX^{\top})^{-1} X, k \ge 2(1 - \beta)n
$$

While $\|\xi^t - \xi^{t-1}\| \ge \tau$
 $\xi^{t+1} \leftarrow H T_k (\xi^t - \nabla f(\xi^t))$
Return $w^t \leftarrow (XX^{\top})^{-1} X (y - \xi^t)$

Simple(r) Algorithms for Gaussian Features

Assumptions

Assumption: $x \sim \mathcal{N}(0,1)$ and the oblivious noise is symmetric

We can transform the data to satisfy this

- Let $z_i \sim \{+1, -1\}$ uniformly at random
- $y_i \rightarrow y'_i = z_i y_i = w^* \cdot (z_i x_i) + (z_i \xi_i) + (z_i \epsilon_i)$

• $x_i \rightarrow x'_i = z_i x_i$

Gaussian Features: 1-dimension

Assumption: $x \sim \mathcal{N}(0,1)$ and the oblivious noise is symmetric

Theorem [d'ONS'21]: Given $\tau > 0$, there is an algorithm taking,

- $n \ge \tau/\beta^2$ samples,
- Runs in $O(n)$ time,

And with probability $1 - 2\exp(-\Omega(\tau))$ recovers \hat{w} satisfying, ̂

$$
|\hat{w} - w^*|^2 \leq \frac{\tau}{n \cdot \beta^2}.
$$

[d'Orsi-Novikov-Steurer'21]

Gaussian Features: 1-dimension

$$
(y_i/x_i) = w^* + (\epsilon_i + \xi_i)/x_i.
$$

Symmetric

Estimator: \hat{w} = median $({y_i}/{x_i} : |x_i| \ge 1/2})_{i=1}^n$ ̂

- Anticoncentration: $Pr_{x, \sim \mathcal{N}(0,1)} [|x_i| \ge 1/2] \ge \Omega(1)$. *x*_{*i*}∼ *√* (0,1)
- $(y_i/x_i) w[*]$ is symmetric and concentrated around 0.

 $\Pr[\left| \frac{\epsilon_i + \xi_i}{x_i} \right| \leq \tau] \geq \Pr[\left| \frac{\epsilon_i + \xi_i}{x_i} \right| \leq \tau/2] \geq \beta \tau/20.$

What about higher dimensions?

Gaussian Features: d-dimensions

If oblivious noise is symmetric, can extend one-dimensional case

Assumption: $x \sim \mathcal{N}(0,I_d)$ and the oblivious noise is symmetric

Theorem [d'ONS'21]: Given $\Delta > 10 + \|w^*\|$, there is a polytime \blacksquare algorithm that draws $n \geq \tilde{\Omega}_{\Lambda, d}(d/\beta^2)$ samples and with probability $1 - d^{-10}$ recovers \hat{w} satisfying ̂

$$
\|\hat{w} - w^*\| \le \tilde{O}\left(\frac{d}{n\beta^2}\right).
$$

[d'Orsi-Novikov-Steurer'21]

Ideas

Apply one-d estimator coordinate-wise. For coordinate $k_{\rm r}$

$$
\frac{y_i}{x_k} = w_k^* + \frac{1}{x_k} \left(\epsilon_i + \sum_{j \neq k} w_j^* \cdot x_j + \xi_i \right).
$$

Recovery
$$
w_k^*
$$
 to an additive error of $O\left(\frac{(1 + ||w^*||^2) \log(d)}{n\beta^2}\right)$.

How do we deal with dependence on ∥*w**∥?

Bootstrap!

- Let $w^{(i)}$ be the *i*-th estimate and $\{(x'_j, y'_j)\}$ be fresh samples.
- Construct $\{(x'_j, y'_j w^{(i)} \cdot x'_j)\}$ with signal $w^* w^{(i)}$ and norm $\ll ||w^*||/2$.
- Repeat to get improved estimate.

Learning Generalized Linear Models with Oblivious Noise

Regression with Oblivious Noise

Given: independent samples $\{(x_1, y_1), ..., (x_n, y_n)\} \in \mathbb{R}^d \times \mathbb{R}$.

 $y_i = g(w^* \cdot x_i) + \epsilon_i + \xi_i$

where $\xi_i \thicksim \mathscr{D}$, $\epsilon_i \thicksim \mathscr{N}(0,\sigma^2)$ drawn i.i.d. and $\Pr[\xi_i = 0] \geq \beta$ **Goal:** Recover \hat{w} s.t. $\mathbb{E}_x[(g(\hat{w} \cdot x) - g(w^* \cdot x))^2]$ is small ̂

We assume g (link) is monotonically increasing and Lipschitz

Generality of our setting

Our Goal: First algorithm for GLM regression with oblivious noise s.t. $n \to \infty$ implies error $\to 0$

Setting: $||x||, ||w^*|| \leq poly(d)$. No further assumptions on ξ .

Can't symmetrize the noise while preserving the problem

$$
-\sigma(w^* \cdot x_j) \neq \sigma(w^* \cdot -x_j)
$$

Setting sometimes not uniquely identifiable.

 $g(z) = max(0, z) = ReLU(z)$

Generality of our setting

Our Goal: First algorithm for GLM regression with oblivious noise s.t. $n \to \infty$ implies error $\to 0$

Setting: $||x||, ||w^*|| \leq poly(d)$. No further assumptions on ξ .

Can't symmetrize the noise while preserving the problem

$$
-\sigma(w^* \cdot x_j) \neq \sigma(w^* \cdot -x_j)
$$

Setting sometimes not uniquely identifiable.

In this case, we output a list!

Our Result

Theorem [DKPT'23]: There exists an algorithm which,

- **Draws polynomially many samples.**
- Runs in polynomial time.
- If uniquely identifiable: Recovers an estimate for *g*(*w** ⋅ *x*) **Else:** returns a list containing an estimate for $g(w^* \cdot x)$.

Today:

- What to do when median(ξ) = 0.
- **How we prune candidates.**

Median 0 Oblivious Noise

Without $g(\cdot)$: minimize ℓ_1 -loss (w) = 1 $\frac{1}{n} \sum_i |w \cdot x_i - y_i|$

What happens when *g* comes into the picture?

g makes standard losses non-convex (e.g.) ¹ *ⁿ* ∑*ⁱ* |*g*(*w* ⋅ *xi*) − *yi*| Landscape Design: Find a convex surrogate for nonconvex loss. Original Loss Convex Surrogate Squared loss Matching loss* 1 *ⁿ* ∑*ⁱ* (*g*(*w* ⋅ *xi*) − *yi*) ² → 1 *ⁿ* ∑*ⁱ* (∫ *w*⋅*xi* ⁰ *g*(*t*) − *yi dt*) →

*Dating back to Auer, Herbster, Warmuth'95

Median 0 Oblivious Noise

Without $g(\cdot)$: minimize ℓ_1 -loss (w) = 1 $\frac{1}{n} \sum_i |w \cdot x_i - y_i|$

What happens when *g* comes into the picture?

Median 0 Oblivious Noise

Without $g(\cdot)$: minimize ℓ_1 -loss (w) = 1 $\frac{1}{n} \sum_i |w \cdot x_i - y_i|$

What happens when *g* comes into the picture?

Solution: Find w minimizing $\frac{1}{n}$ $\frac{1}{n}\sum_i$ *w*⋅*xi* \int_0^{∞} *x_i* sign($g(t) - y_i$) *dt*

median(*ξ*)≠0: Family of similar losses + pruning procedure

How do we prune?

One-dimensional Pruning

Stylized one-dimensional setting:

 $g(t) = t$, $\sigma = 1$ and $\text{pdf}_{D_x}(x) \ge c$ for $x \in (8,10) \cup (0,2)$

Given *w*, how do we check that *w* is a solution?

Based on quantiles of $y_i - w \cdot x_i = (w^* - w) \cdot x_i + (\xi_i + \epsilon_i)$.

High-dimensional Pruning

In higher dimesnions not as clear which regions to condition on

Stylized setting: Assume *x* is anticoncentrated

 $Given: L = \{w_1, ..., w_q\}$ such that $w^* \in L$ **Recover:** w^* from L.

Tournament-style algorithm:

- For each $w, w' \in L$: Partition \mathbb{R}^d depending on value of $v(x) := (w \cdot x) - (w' \cdot x)$.
- Prune if you can identify 2 regions s.t. the quantiles are sufficiently different.
- Since $w^* \in L$, if w is to be eliminated, such regions will be identified.

Summary

- Oblivious noise: Captures a broad range of additive independent noise models.
- Today: A biased subsampling of the literature and a result on GLMs with oblivious noise.
- **Open questions:**
	- What are the optimal rates for learning GLMs with oblivious noise?
	- Open questions in the context of location estimation, stochastic convex optimization, etc.