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Setup:
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e-contaminated samples from k-mixture D = Z w; P;
i=1
 P.has mean y; and covariance 2, both unknown
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Robust Clustering Mixture Distributions arXiv:2312.11769

e < minw,/100

4 )
Setup:

k
e-contaminated samples from k-mixture D = Z w; P;
i=1
 P.has mean y; and covariance 2, both unknown

What is the minimum
separation?

o U; p; “well separated” <«

\ ),

4 )
Goal: Identify 95% of the samples correctly for every cluster

\ ),
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Natural Goal: If all cluster covariances < 021, assume separation > 0\/%
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4 )

Natural Goal: |If all cluster covariances << 021, assume separation > 0\/7{
\_ ),

Solved! [DKKLT22]: Near-linear time algorithm, also for list-decodable mean estimation

Clearly separable/clusterable

2

but [DKKLT22] fails
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New Goal: Between clusters i, j, assume separation > (o; + aj)\/z

// Fine-grained separation
\

J

Solved! [DKKLT22]: Near-linear time algorithm, also for list-decodable mean estimation
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Clearly separable/clusterable

but [DKKLT22] fails
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Minimum Separation - Uniform Mixtures arXiv:2312.11769

Fine-grained separation
e O A

New Goal: Between clusters i, j, assume separation > (o; + aj)\/l_c
\— ),

Prior work:

. [DKKLT22]: max ; 67/ k separation

. [BKK22]: (0; + 0)) poly(k, log n) separation + “No large sub-cluster” assumption
Our work:

. [DKLP23]: (0; + 6;)\/k separation
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Failure probability Corrupted, ¢ < 1/(100k)
r N\ an a

- |
Theorem: Given O((d + log 1/8) k?) samples from D = Z ;Pl-

where P; has mean y; and covariance 2; < al.zl (all unknown)
and [|u; — wll > (0; + o /k
Algorithm returns sets B, ..., B, such that up to index permutation:
e B; overlaps with 95% of cluster i samples S,

« Mean of B; is O(o;) close to u;

Jasper Lee Clustering Bounded Covariance Mixtures 5



Theorem — Uniform Mixtures arXiv:2312.11769

Failure probability Corrupted, ¢ < 1/(100k)
r N\ an 2

- |
Theorem: Given O((d + log 1/8) k?) samples from D = Z ;Pl-

where P; has mean y; and covariance 2; < al.zl (all unknown)
and ||u; — il > (0;+ o)\/k
Algorithm returns sets B, ..., B, such that up to index permutation:
e B; overlaps with 95% of cluster i samples S,

« Mean of B; is O(o;) close to u;
L _J

Remarks:

Jasper Lee Clustering Bounded Covariance Mixtures 5



Theorem — Uniform Mixtures

Failure probability -\\ //- Corrupted, ¢ < 1/(100k)
N

_J

-
~ 1
Theorem: Given O((d + log 1/8) k?) samples from D = Z ;Pl-
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where P; has mean y; and covariance 2; < al.zl (all unknown)
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Remarks:

» Does not need to know k precisely, only need input @ € [0.6/k,1/k]
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Failure probability -\\ //- Corrupted, ¢ < 1/(100k)
N
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Theorem: Given O((d + log 1/8) k?) samples from D = Z ;Pl-
j
where P; has mean y; and covariance 2; < al.zl (all unknown)
and [|u; — wll > (0; + o /k
Algorithm returns sets B, ..., B, such that up to index permutation:
e B; overlaps with 95% of cluster i samples S,
« Mean of B; is O(o;) close to u;
\_
Remarks:

» Does not need to know k precisely, only need input @ € [0.6/k,1/k]

» Can work for almost-uniform mixtures, with each w. € [0.9/k,1.1/k]

arXiv:2312.11769
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4 )

Observation: Suffices to find the component means, and cluster by nearest representative

\_ _J

® ®
H; H;
at most 1/
fraction
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What can we do when a < 1/27
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List-Decodable Mean Estimation arXiv:2312.11769

4 )
Fact [DKKLT22]: Near-linear time algorithm, outputs a list of O(1/a) vectors

One of them is O(G/ﬁ)—close to the true mean of P

\_ \- Y,
Usea ~ 1/k

Caveat: DKKLT22 requires knowing o to constant factor.

Solution: First generate a poly(n)-sized list of candidate o,

then run DKKLT22 using all candidate standard deviations

Jasper Lee Clustering Bounded Covariance Mixtures 8



A|gOr|thm Outline arXiv:2312.11769

4 )
Algorithm:

. Input: O((d + log 1/5) k?) samples, parameter k

1. Generate many (but poly-sized many) candidate means + s.d. /
I. Using list-decodable mean estimation

2. Pruning to get exactly 1 close-enough candidate mean per cluster
I. Ensure every candidate mean is close to a cluster mean

il. Prune if too many means per cluster
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of &~ n/k samples w/ standard deviation §

Find: w_€ [0,1] for all x in sample set

such that

s
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Pruning — Main Step arXiv:2312.11769

4 )
Ingredient: Check if candidate mean /i corresponds to cluster

of &~ n/k samples w/ standard deviation §

Find: w_€ [0,1] for all x in sample set

such that Z " (x B /2) (x B ﬂ)T

< OG%) ), W

(k)

D w, > 0.97n/k \

Ky-Fan norm = sum of top-k singular/eigenvalues
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. Input: O((d + log 1/5) k?) samples, parameter k
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Pruning —_ By Mass arXiv:2312.11769

4 )

Issue: A cluster can correspond to many remaining candidate means
\ _J

Observation: Multiple candidate means will split a cluster,

at least one with small size ( < 1/k fraction)

Solution: Repeatedly cluster with nearest representative,

and prune candidate means with cluster size < 0.96n/k
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4 )
Algorithm:

. Input: O((d + log 1/5) k?) samples, parameter k

1. Generate many (but poly-sized many) candidate means + s.d. /
I. Using list-decodable mean estimation

2. Pruning to get exactly 1 close-enough candidate mean per cluster
I. Ensure every candidate mean is close to a cluster mean \/

il. Prune if too many means per cluster \/
\ _J
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Setup:
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e < al/l100 w. > o

4 )
Setup:

k
e-contaminated samples from k-mixture D = Z w; P;
i=1
P, has mean y; and covariance 2; < 01.21, both unknown

o U, p; “well separated” < l; — will > (o;+ 6)/\/a
\_ ),
4 ] )
Goal Impossible
\_ ),
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Non-identifiability arXiv:2312.11769

— - —
- -~ -~

Even if we know: (®®

c k=3
e Minweighta = 1/4

Even with infinite uncorrupted samples @ @

4 )

Question: What information can we compute about the clustering?
\_ _J

Maybe: Compute all sub-clusterings, except for the grouping
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Clustering Refinement

4 )
Definition: Given true cluster samples 3y, ..., S,, totalling n samples,
the disjoint subsets By, ..., B, form an accurate refinement if:

. |B;| 2 0.95an

o Nlug, = up |l > (o5 + 05 )\

» They can be grouped into k sample sets Si, ..., S; such that

e §;and S, have 92% overlap

- W,

arXiv:2312.11769

Jasper Lee Clustering Bounded Covariance Mixtures
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Theorem — Arbitrary Mixtures arXiv:2312.11769

Failure probability Corrupted, ¢ < /100 w; > o
g —N 7 e 2

Theorem: Given O((d + log 1/5)/a*) samples from D = Z w.P,

l

where P; has mean y; and covariance 2; < 01.21 (all unknown)

and ||w; — wll > (0, + 61/ @

Algorithm returns sets By, ..., B, that is an accurate refinement

of true clustering S, ..., S,
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Theorem — Arbitrary Mixtures arXiv:2312.11769

Failure probability Corrupted, ¢ < /100 w; > o
g —N 7 e 2

Theorem: Given O((d + log 1/5)/a*) samples from D = Z w.P,

l

where P; has mean y; and covariance 2; < 01.21 (all unknown)

and ||w; — wll > (0, + 61/ @

Algorithm returns sets By, ..., B, that is an accurate refinement

of true clustering S, ..., S,

\_ _J

Remarks: /- Previous alg (replace k with 1/a) + distance-based pruning

e One single algorithm for both theorems
e Corollary: existence of a common refinement for all possible clusterings
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Clustering Arbitrary Mixtures arXiv:2312.11769

a )

Question: What is a sufficient assumption to compute a clustering not just a refinement?

\_ Y,
Bad Good

1 cluster? 3 clusters?
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No Large Sub-Cluster Condition arXiv:2312.11769

4 )

Definition: The sample sets 1, ..., S, of total size n have “no large sub-clusters” if

For every §; and every subset §’ C §, of size > 0.8an - Every large subset

We have oy > 0.10¢ « Should not look like its own cluster
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No Large Sub-Cluster Condition arXiv:2312.11769

4 )

Definition: The sample sets 1, ..., S, of total size n have “no large sub-clusters” if

For every §; and every subset §’ C §, of size > 0.8an - Every large subset

We have oy > 0.10¢ « Should not look like its own cluster

\_
~

J

Theorem: [f the (uncorrupted) input samples have no large sub-clusters,

then Algorithm returns a clustering with k sets instead of a refinement.

\_ N
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No Large Sub-Cluster Condition

arXiv:2312.11769

4 )
Definition: The sample sets 1, ..., S, of total size n have “no large sub-clusters” if
For every §; and every subset S’ C §. of size > 0.8an - Every large subset
We have oy > 0.10¢ « Should not look like its own cluster
\_ Y,
a )
Proposition: For well-conditioned+high-d log-concave distributions, drawing
O(d/a?) samples ensures no large sub-clusters, due to thin-shell behavior.
\_ W,
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\_
~

J

~ Isotropic covariance ——,
Proposition: For well-conditioned+high-d log-concave distributions, drawing

O(d/a?) samples ensures no large sub-clusters, due to thin-shell behavior.
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No Large Sub-Cluster Condition arXiv:2312.11769

4 )

Definition: The sample sets 1, ..., S, of total size n have “no large sub-clusters” if
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A single poly-time algorithm such that:

 Near-uniform mixture: recovers clustering to 95% accuracy

* Arbitrary mixtures: recovers accurate refinement

o Arbitrary mixture + No Large Sub-Cluster condition: recovers clustering to 95% accuracy

» Can tolerate corruption level ¢ < a/100
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A single poly-time algorithm such that:

 Near-uniform mixture: recovers clustering to 95% accuracy

* Arbitrary mixtures: recovers accurate refinement

o Arbitrary mixture + No Large Sub-Cluster condition: recovers clustering to 95% accuracy

» Can tolerate corruption level ¢ < a/100

Structural:

o All ground truth clusterings of a mixture share a common refinement
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Open Problems arXiv:2312.11769

Computational:
e Current algorithm is poly-time but very slow

How far can we push separation assumption?:

» Even for uniform mixtures, assumes < 1/k pairwise overlap

. Goal: Design the most versatile algorithm

5% overlap
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A single poly-time algorithm such that:

 Near-uniform mixture: recovers clustering to 95% accuracy

* Arbitrary mixtures: recovers accurate refinement

o Arbitrary mixture + No Large Sub-Cluster condition: recovers clustering to 95% accuracy

» Can tolerate corruption level ¢ < a/100

Structural:

o All ground truth clusterings of a mixture share a common refinement
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