

Clustering Mixtures of Bounded Covariance Distributions Under Optimal Separation

Jasper Lee

University of Wisconsin-Madison

Joint work with Ilias Diakonikolas, Daniel Kane, Thanasis Pittas

Mixture model:

Jasper Lee

Mixture model:

$$D = \frac{1}{2}P_1 + \frac{1}{3}P_2 + \frac{1}{6}P_3$$

1 6

 $\frac{1}{2}$

 $\frac{1}{3}$

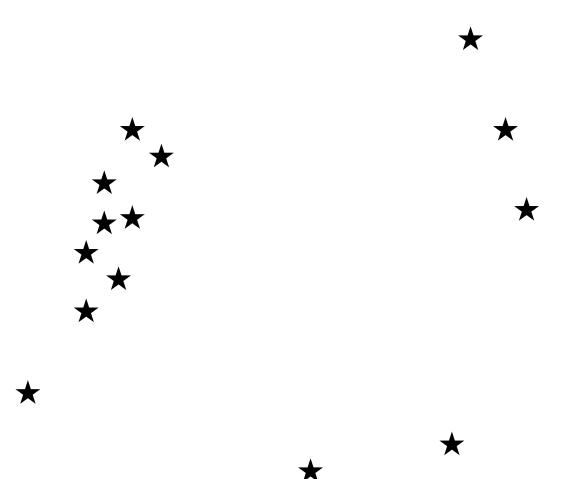
Mixture model:

$$D = \frac{1}{2}P_1 + \frac{1}{3}P_2 + \frac{1}{6}P_3$$

 $\frac{1}{2}$

 $\frac{1}{3}$

Data:



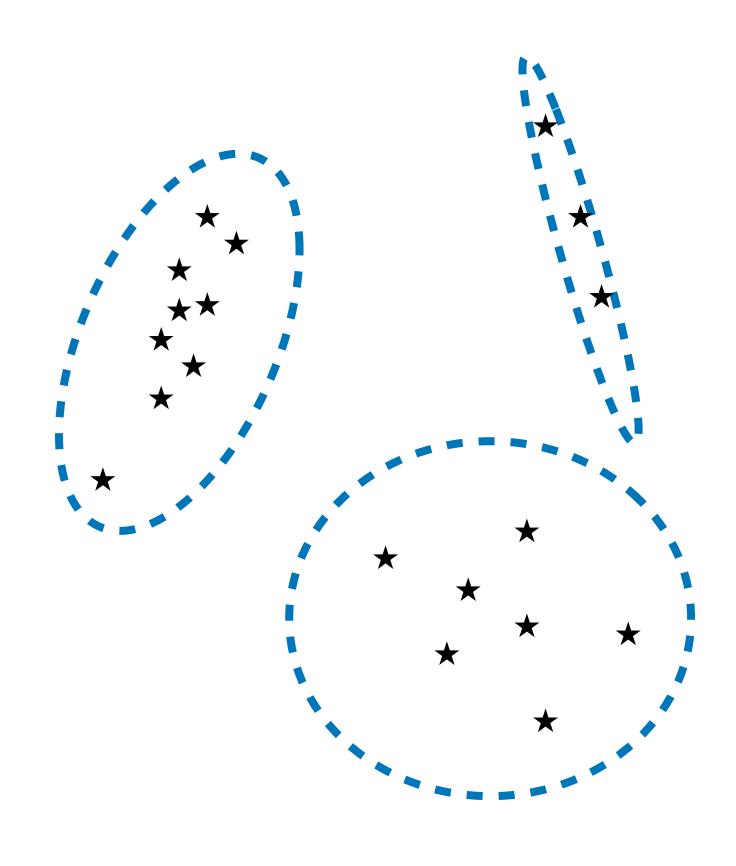
Mixture model:

$$D = \frac{1}{2}P_1 + \frac{1}{3}P_2 + \frac{1}{6}P_3$$

 $\frac{1}{2}$

 $\frac{1}{3}$

Data:



arXiv:2312.11769

Setup:

- $\epsilon \text{-contaminated samples from } k\text{-mixture } D = \sum_{i=1}^\kappa w_i P_i$
- P_i has mean μ_i and covariance Σ_i , both unknown
- μ_i, μ_j "well separated"

arXiv:2312.11769

Setup:

- ϵ -contaminated samples from k -mixture $D = \sum_{i=1}^\kappa w_i P_i$
- P_i has mean μ_i and covariance Σ_i , both unknown
- μ_i, μ_j "well separated"

Goal: Identify 95% of the samples correctly for every cluster

arXiv:2312.11769

 $\epsilon \leq \min w_i/100$

Setup:

- ϵ -contaminated samples from k-mixture $D = \sum_{i=1}^{\kappa} w_i P_i$
- P_i has mean μ_i and covariance Σ_i , both unknown
- μ_i, μ_j "well separated"

Goal: Identify 95% of the samples correctly for every cluster

arXiv:2312.11769

 $\epsilon \le \min w_i / 100$

Setup:

- ϵ -contaminated samples from k-mixture $D = \sum_{i=1}^{\kappa} w_i P_i$
- P_i has mean μ_i and covariance Σ_i , both unknown

Goal: Identify 95% of the samples correctly for every cluster

arXiv:2312.11769

arXiv:2312.11769

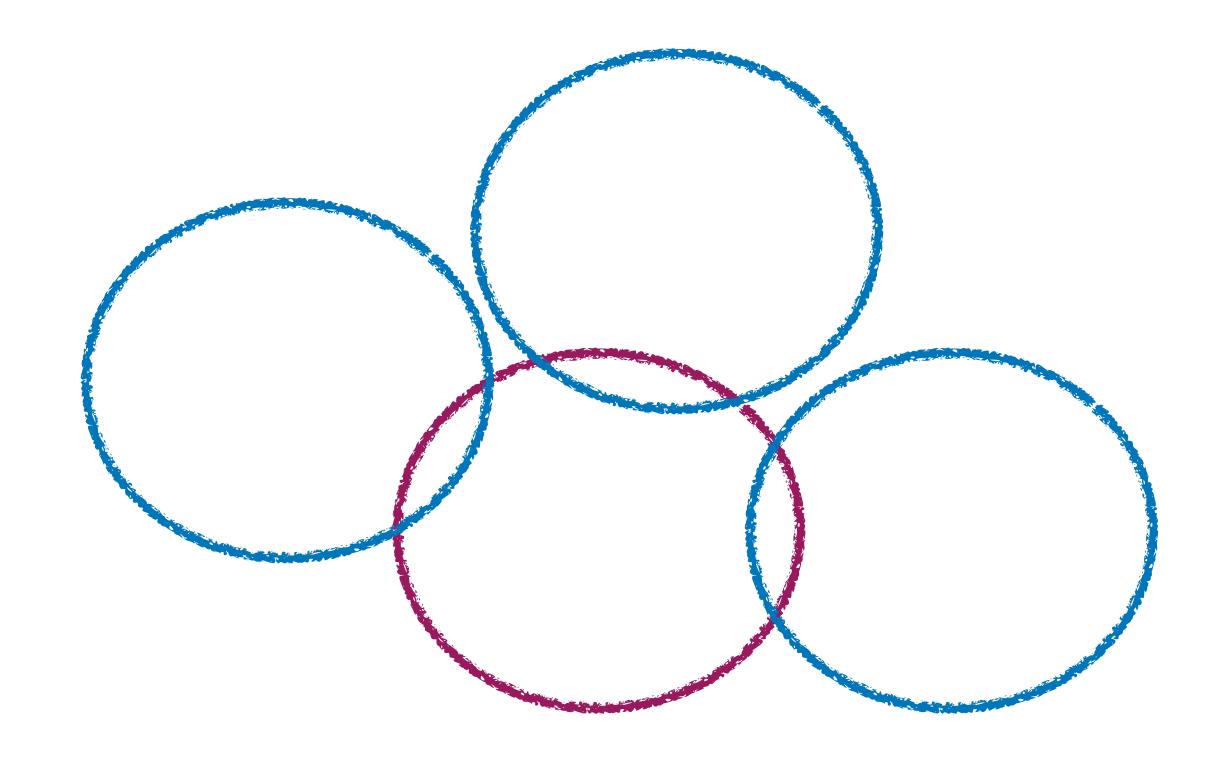
Assume: Uniform mixture (for now)

$$D = \sum_{i=1}^{k} \frac{1}{k} P_i$$

arXiv:2312.11769

Assume: Uniform mixture (for now)

$$D = \sum_{i=1}^{k} \frac{1}{k} P_i$$

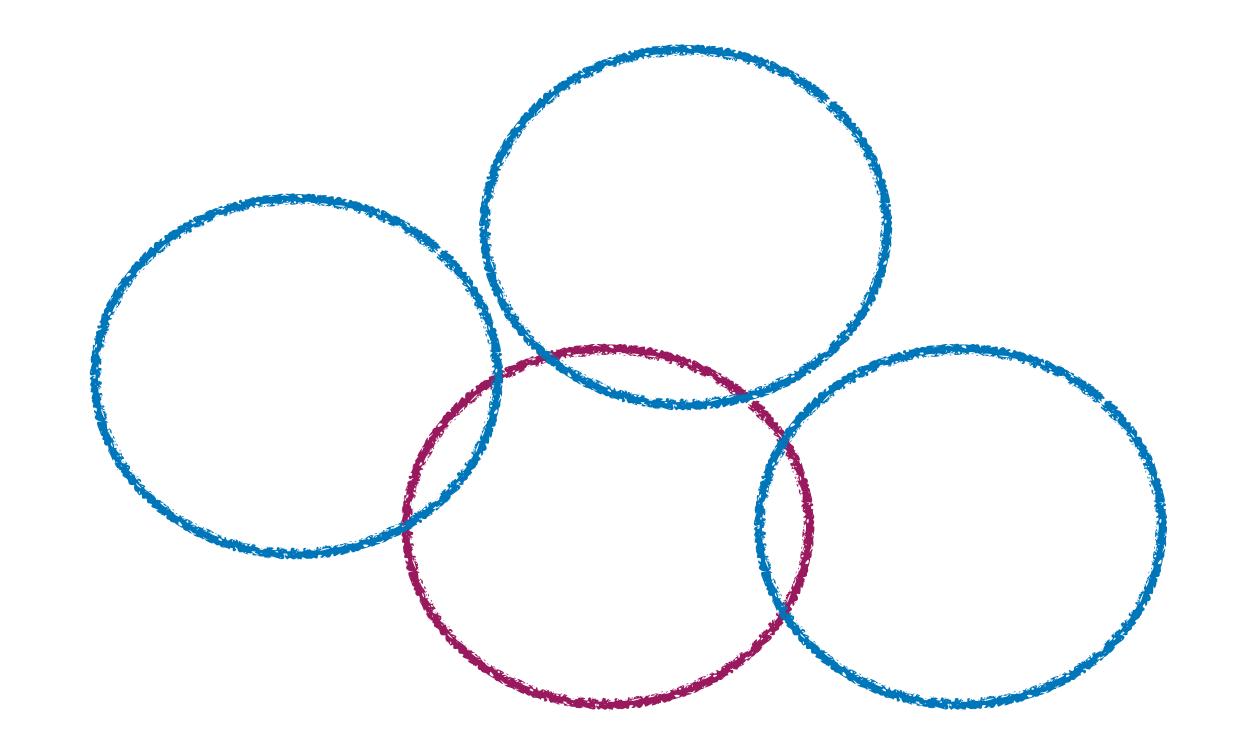


arXiv:2312.11769

Assume: Uniform mixture (for now)

$$D = \sum_{i=1}^{k} \frac{1}{k} P_i$$

Pairwise overlap fraction $\lesssim 1/k$

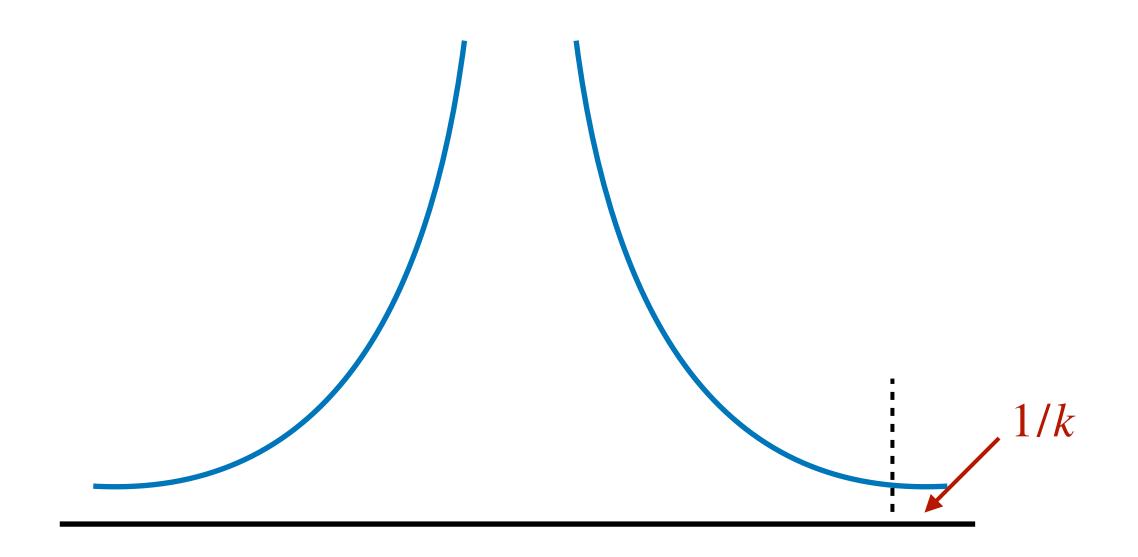


arXiv:2312.11769

Assume: Uniform mixture (for now)

$$D = \sum_{i=1}^{\kappa} \frac{1}{k} P_i$$

Pairwise overlap fraction $\lesssim 1/k$

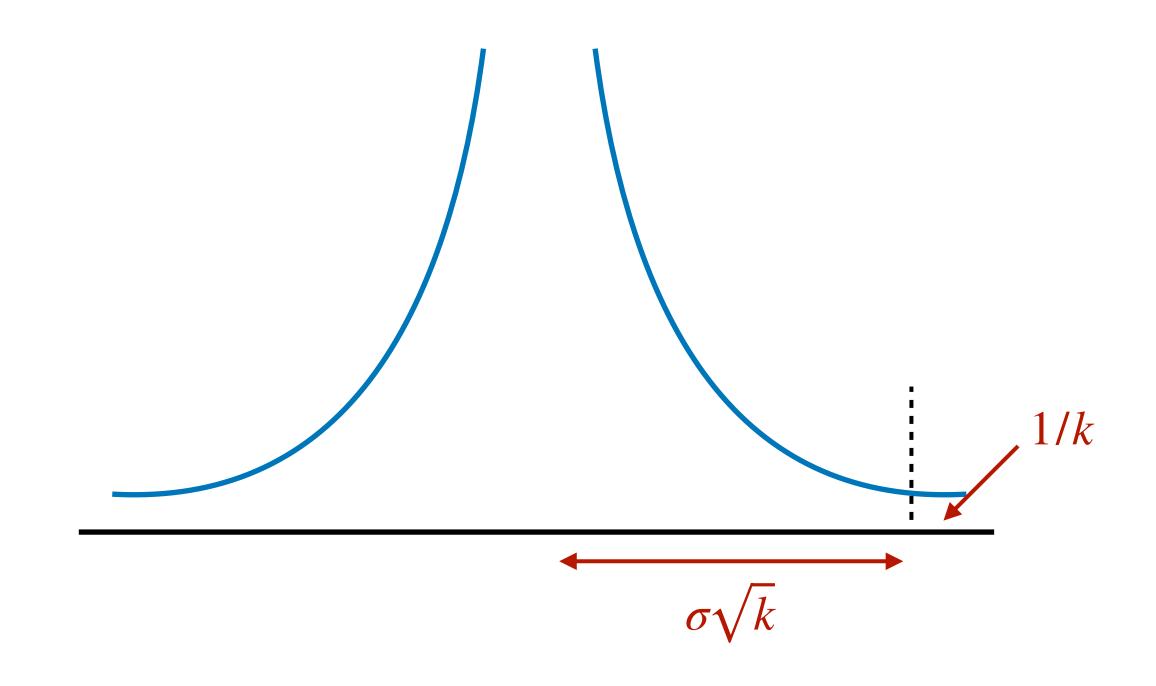


arXiv:2312.11769

Assume: Uniform mixture (for now)

$$D = \sum_{i=1}^{k} \frac{1}{k} P_i$$

Pairwise overlap fraction $\lesssim 1/k$



arXiv:2312.11769

Assume: Uniform mixture (for now)

$$D = \sum_{i=1}^{k} \frac{1}{k} P_i$$

Pairwise overlap fraction $\lesssim 1/k$

Natural Goal: If all cluster covariances $\leq \sigma^2 I$, assume separation $\gg \sigma \sqrt{k}$

arXiv:2312.11769

Assume: Uniform mixture (for now)

$$D = \sum_{i=1}^{k} \frac{1}{k} P_i$$

Pairwise overlap fraction $\lesssim 1/k$

Natural Goal: If all cluster covariances $\leq \sigma^2 I$, assume separation $\gg \sigma \sqrt{k}$

Solved! [DKKLT22]: Near-linear time algorithm, also for list-decodable mean estimation

arXiv:2312.11769

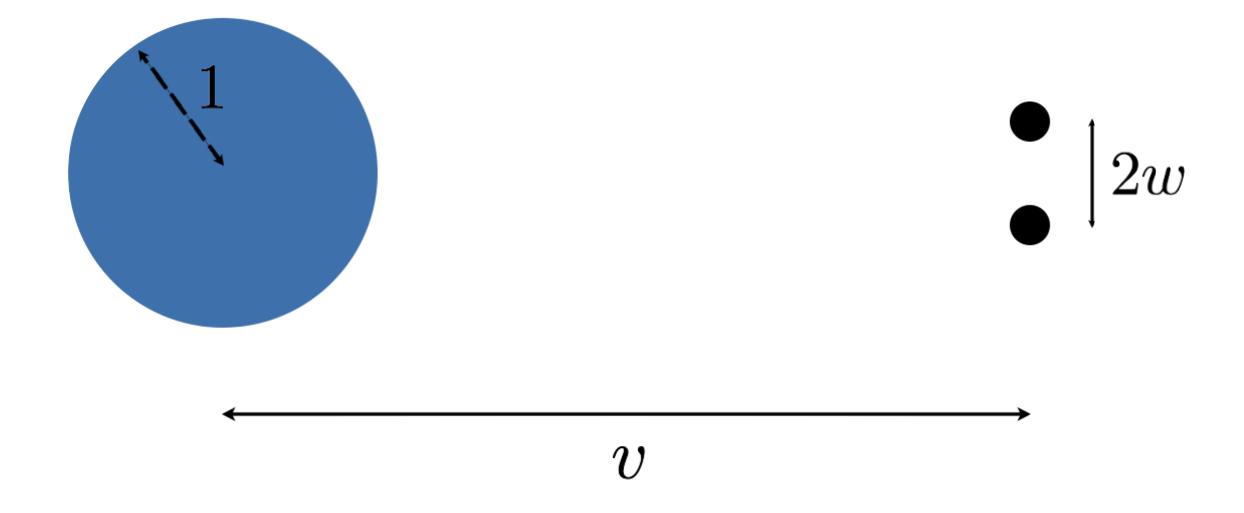
Natural Goal: If all cluster covariances $\leq \sigma^2 I$, assume separation $\gg \sigma \sqrt{k}$

Solved! [DKKLT22]: Near-linear time algorithm, also for list-decodable mean estimation

arXiv:2312.11769

Natural Goal: If all cluster covariances $\leq \sigma^2 I$, assume separation $\gg \sigma \sqrt{k}$

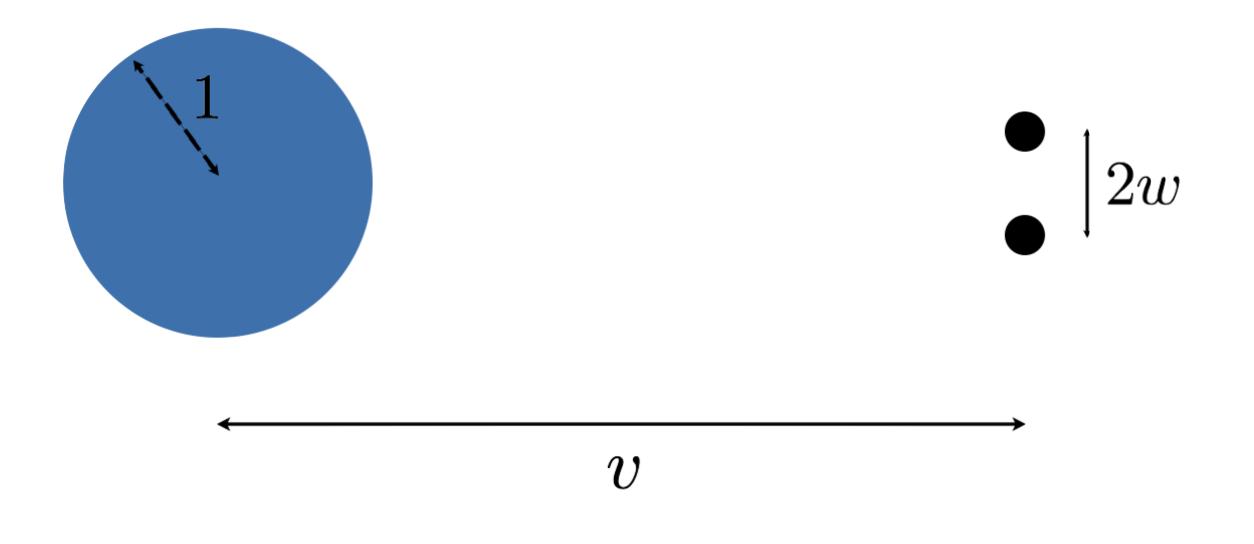
Solved! [DKKLT22]: Near-linear time algorithm, also for list-decodable mean estimation



arXiv:2312.11769

Natural Goal: If all cluster covariances $\leq \sigma^2 I$, assume separation $\gg \sigma \sqrt{k}$

Solved! [DKKLT22]: Near-linear time algorithm, also for list-decodable mean estimation



Clearly separable/clusterable

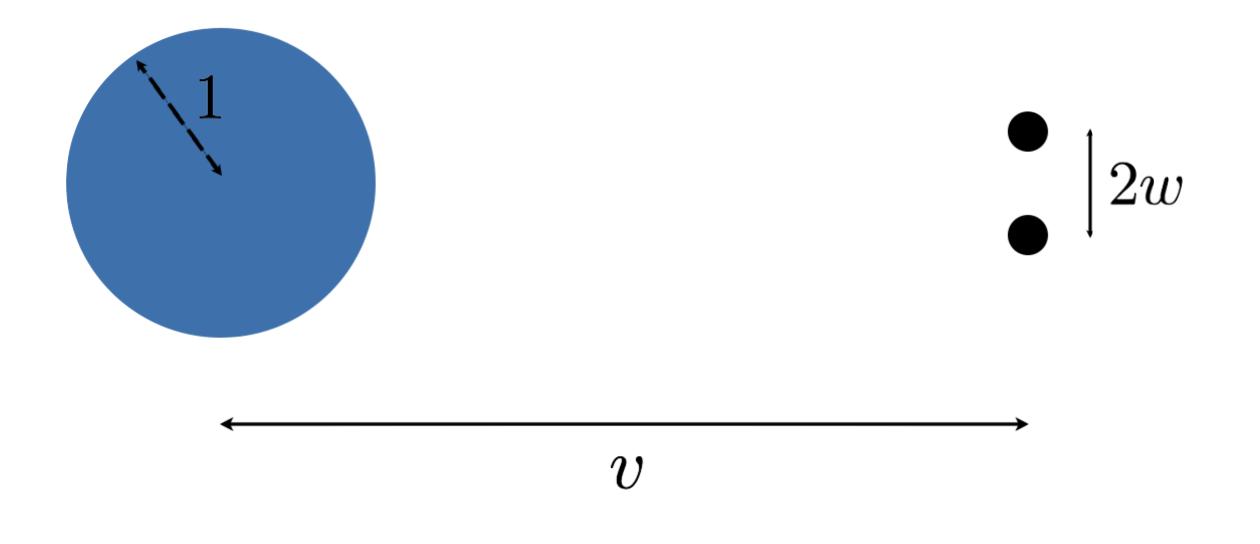
but [DKKLT22] fails

arXiv:2312.11769

Fine-grained separation

New Goal: Between clusters i, j, assume separation $\gg (\sigma_i + \sigma_j)\sqrt{k}$

Solved! [DKKLT22]: Near-linear time algorithm, also for list-decodable mean estimation



Clearly separable/clusterable

but [DKKLT22] fails

arXiv:2312.11769

Fine-grained separation

New Goal: Between clusters i, j, assume separation $\gg (\sigma_i + \sigma_j)\sqrt{k}$

arXiv:2312.11769

Fine-grained separation

New Goal: Between clusters i, j, assume separation $\gg (\sigma_i + \sigma_j)\sqrt{k}$

Prior work:

- [DKKLT22]: $\max_i \sigma_i \sqrt{k}$ separation
- [BKK22]: $(\sigma_i + \sigma_i) \operatorname{poly}(k, \log n)$ separation + "No large sub-cluster" assumption

arXiv:2312.11769

Fine-grained separation

New Goal: Between clusters i, j, assume separation $\gg (\sigma_i + \sigma_j)\sqrt{k}$

Prior work:

- [DKKLT22]: $\max_i \sigma_i \sqrt{k}$ separation
- [BKK22]: $(\sigma_i + \sigma_j) \operatorname{poly}(k, \log n)$ separation + "No large sub-cluster" assumption

Our work:

• [DKLP23]: $(\sigma_i + \sigma_j) \sqrt{k}$ separation

arXiv:2312.11769

Failure probability -

Corrupted, $\epsilon \leq 1/(100k)$

Theorem: Given $\tilde{O}((d + \log 1/\delta) k^2)$ samples from $D = \sum_{i} \frac{1}{k} P_i$

where P_i has mean μ_i and covariance $\Sigma_i \preceq \sigma_i^2 I$ (all unknown)

and
$$\|\mu_i - \mu_j\| \gg (\sigma_i + \sigma_j)\sqrt{k}$$

Algorithm returns sets B_1, \ldots, B_k such that up to index permutation:

- B_i overlaps with 95% of cluster i samples S_i
- Mean of B_i is $O(\sigma_i)$ close to μ_i

Failure probability -

Corrupted, $\epsilon \leq 1/(100k)$

Theorem: Given $\tilde{O}((d + \log 1/\delta) k^2)$ samples from $D = \sum_{i} \frac{1}{k} P_i$

where P_i has mean μ_i and covariance $\Sigma_i \preceq \sigma_i^2 I$ (all unknown)

and
$$\|\mu_i - \mu_j\| \gg (\sigma_i + \sigma_j)\sqrt{k}$$

Algorithm returns sets B_1, \ldots, B_k such that up to index permutation:

- B_i overlaps with 95% of cluster i samples S_i
- Mean of B_i is $O(\sigma_i)$ close to μ_i

Remarks:

Failure probability -

Corrupted, $\epsilon \leq 1/(100k)$

Theorem: Given $\tilde{O}((d + \log 1/\delta) k^2)$ samples from $D = \sum_{i} \frac{1}{k} P_i$

where P_i has mean μ_i and covariance $\Sigma_i \preceq \sigma_i^2 I$ (all unknown)

and
$$\|\mu_i - \mu_j\| \gg (\sigma_i + \sigma_j)\sqrt{k}$$

Algorithm returns sets B_1, \ldots, B_k such that up to index permutation:

- B_i overlaps with 95% of cluster i samples S_i
- Mean of B_i is $O(\sigma_i)$ close to μ_i

Remarks:

• Does not need to know k precisely, only need input $\alpha \in [0.6/k, 1/k]$

arXiv:2312.11769

Failure probability -

Corrupted, $\epsilon \leq 1/(100k)$

Theorem: Given $\tilde{O}((d + \log 1/\delta) k^2)$ samples from $D = \sum_i \frac{1}{k} P_i$ where P_i has mean μ_i and covariance $\Sigma_i \leq \sigma_i^2 I$ (all unknown)

and
$$\|\mu_i - \mu_j\| \gg (\sigma_i + \sigma_j)\sqrt{k}$$

Algorithm returns sets B_1, \ldots, B_k such that up to index permutation:

- B_i overlaps with 95% of cluster i samples S_i
- Mean of B_i is $O(\sigma_i)$ close to μ_i

Remarks:

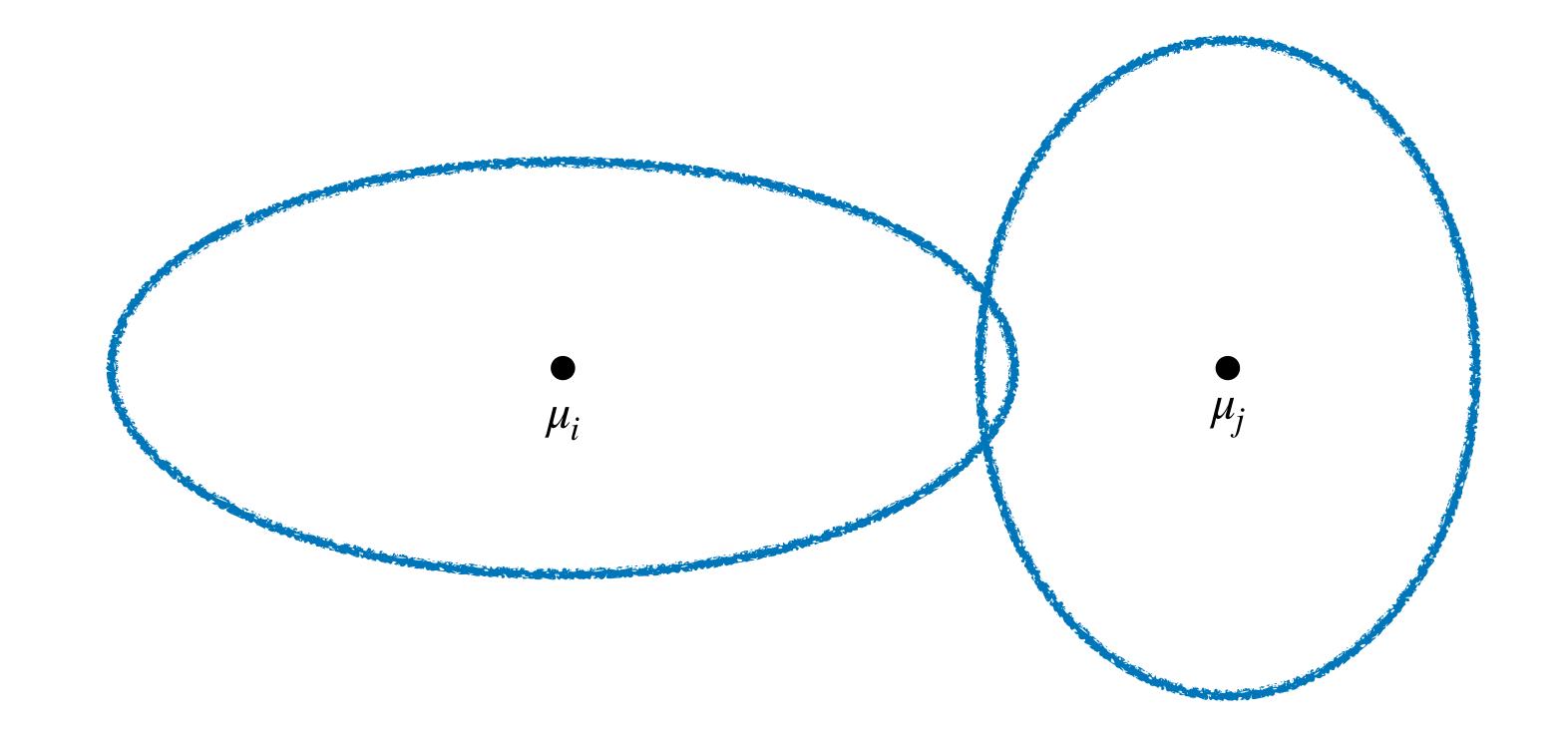
- Does not need to know k precisely, only need input $\alpha \in [0.6/k, 1/k]$
- Can work for almost-uniform mixtures, with each $w_i \in [0.9/k, 1.1/k]$

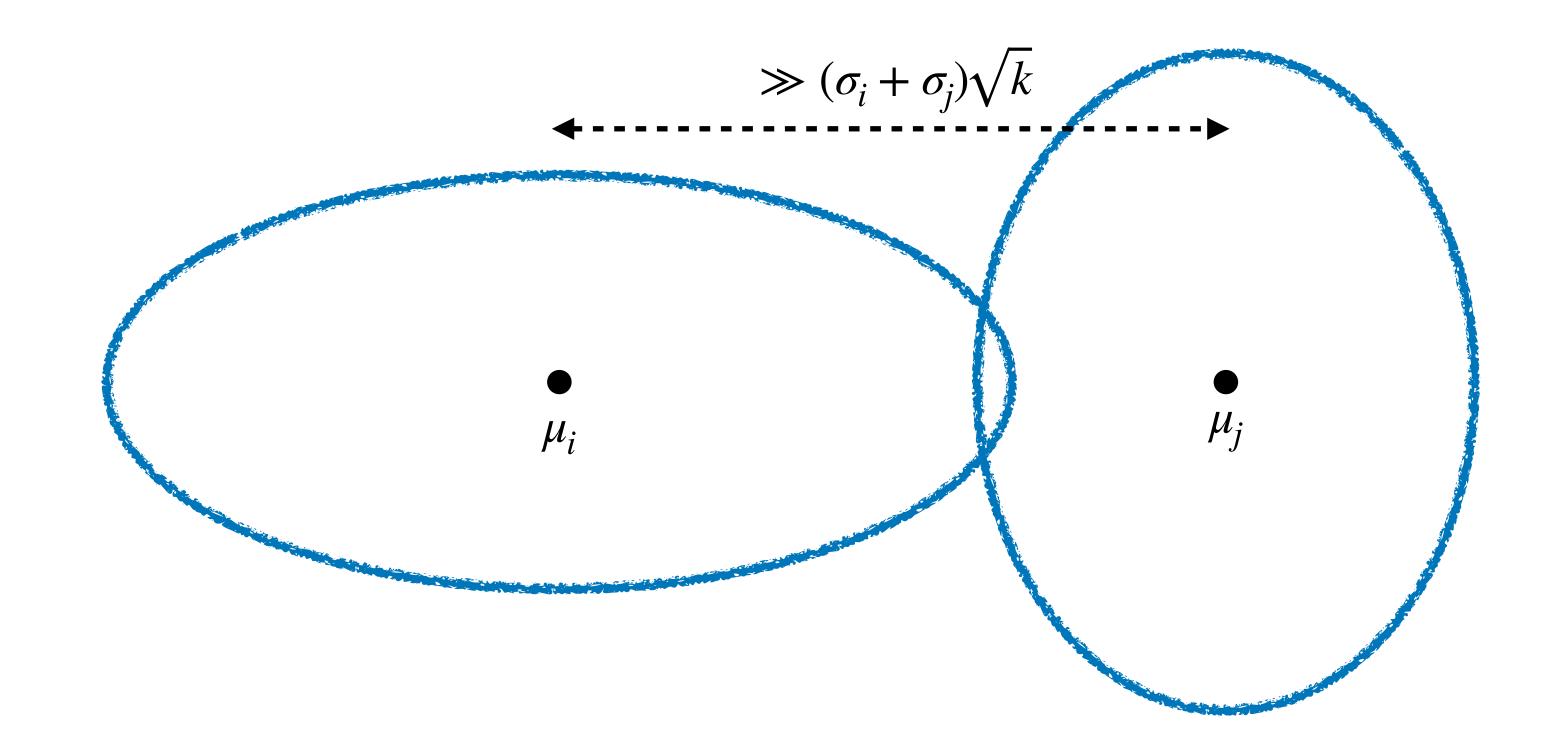
Algorithm — Uniform Mixtures

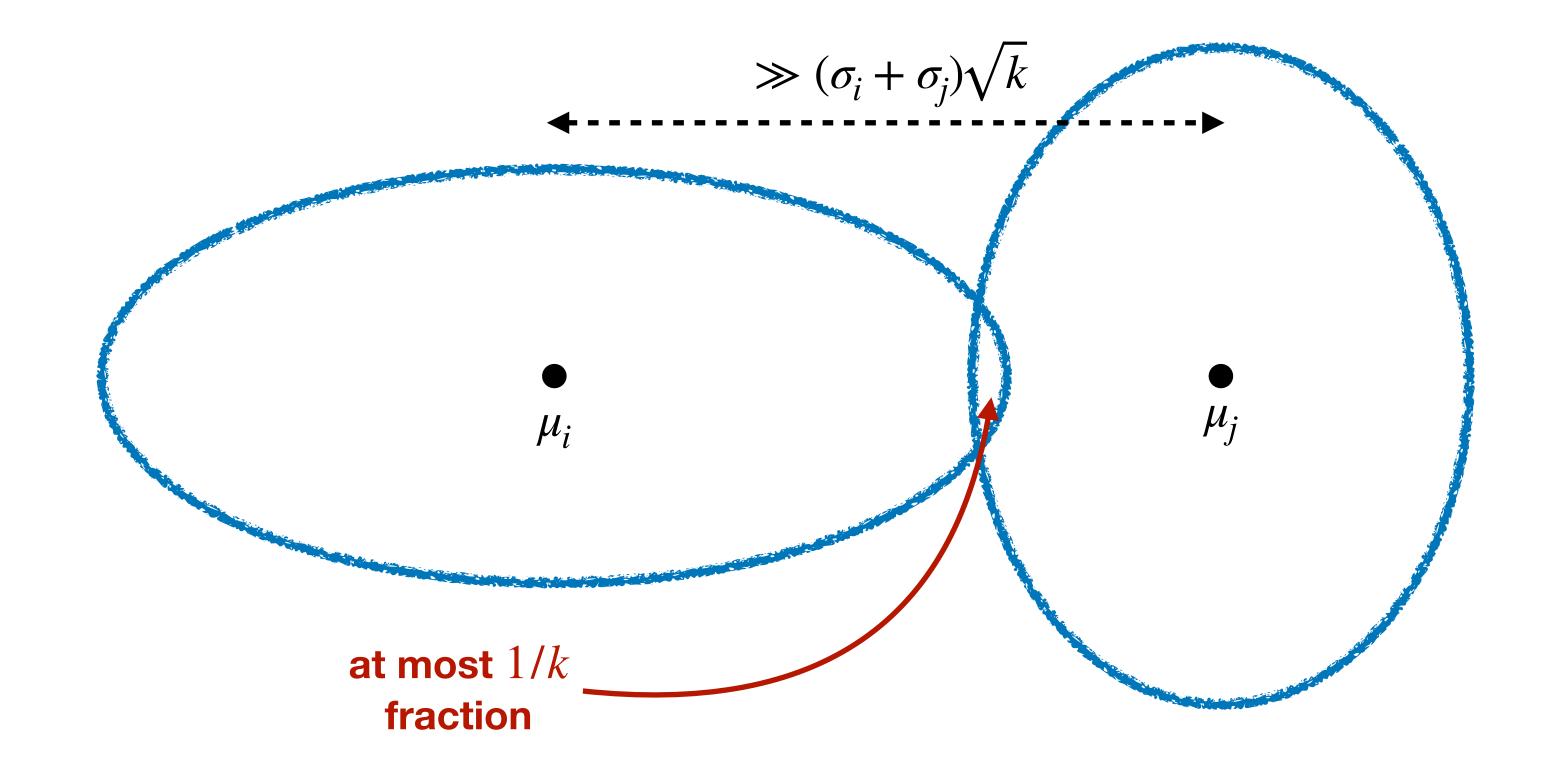
arXiv:2312.11769

Algorithm — Uniform Mixtures

arXiv:2312.11769







Algorithm Outline

arXiv:2312.11769

Algorithm:

Algorithm:

• Input: $\tilde{O}((d + \log 1/\delta) k^2)$ samples, parameter k

- Input: $\tilde{O}((d + \log 1/\delta) k^2)$ samples, parameter k
- 1. Generate many (but poly-sized many) candidate means

- Input: $\tilde{O}((d + \log 1/\delta) k^2)$ samples, parameter k
- 1. Generate many (but poly-sized many) candidate means
 - i. Using list-decodable mean estimation

- Input: $\tilde{O}((d + \log 1/\delta) k^2)$ samples, parameter k
- 1. Generate many (but poly-sized many) candidate means
 - i. Using list-decodable mean estimation
- 2. Pruning to get exactly 1 close-enough candidate mean per cluster

- Input: $\tilde{O}((d + \log 1/\delta) k^2)$ samples, parameter k
- 1. Generate many (but poly-sized many) candidate means
 - i. Using list-decodable mean estimation
- 2. Pruning to get exactly 1 close-enough candidate mean per cluster
 - i. Ensure every candidate mean is close to a cluster mean

- Input: $\tilde{O}((d + \log 1/\delta) k^2)$ samples, parameter k
- 1. Generate many (but poly-sized many) candidate means
 - i. Using list-decodable mean estimation
- 2. Pruning to get exactly 1 close-enough candidate mean per cluster
 - i. Ensure every candidate mean is close to a cluster mean
 - ii. Prune if too many means per cluster

List-Decodable Mean Estimation

arXiv:2312.11769

Problem: Given αn samples from a distribution P with covariance $\leq \sigma^2 I$,

mixed with arbitrary $(1 - \alpha)n$ outliers, estimate the mean of P?

What can we do when $\alpha < 1/2$?

Problem: Given αn samples from a distribution P with covariance $\leq \sigma^2 I$,

mixed with arbitrary $(1 - \alpha)n$ outliers, estimate the mean of P?

What can we do when $\alpha < 1/2$?

Fact [DKKLT22]: Near-linear time algorithm, outputs a *list* of $O(1/\alpha)$ vectors

One of them is $O(\sigma/\sqrt{\alpha})$ -close to the true mean of P

List-Decodable Mean Estimation

arXiv:2312.11769

Fact [DKKLT22]: Near-linear time algorithm, outputs a *list* of $O(1/\alpha)$ vectors

One of them is $O(\sigma/\sqrt{\alpha})$ -close to the true mean of P

Fact [DKKLT22]: Near-linear time algorithm, outputs a *list* of $O(1/\alpha)$ vectors

One of them is $O(\sigma/\sqrt{\alpha})$ -close to the true mean of P

Use $\alpha \approx 1/k$

Fact [DKKLT22]: Near-linear time algorithm, outputs a *list* of $O(1/\alpha)$ vectors

One of them is $O(\sigma/\sqrt{\alpha})$ -close to the true mean of P

Use $\alpha \approx 1/k$

Caveat: DKKLT22 requires knowing σ to constant factor.

Fact [DKKLT22]: Near-linear time algorithm, outputs a *list* of $O(1/\alpha)$ vectors

One of them is $O(\sigma/\sqrt{\alpha})$ -close to the true mean of P

Use $\alpha \approx 1/k$

Caveat: DKKLT22 requires knowing σ to constant factor.

Solution: First generate a poly(n)-sized list of candidate σ_i ,

then run DKKLT22 using all candidate standard deviations

- Input: $\tilde{O}((d + \log 1/\delta) k^2)$ samples, parameter k
- 1. Generate many (but poly-sized many) candidate means + s.d.

- i. Using list-decodable mean estimation
- 2. Pruning to get exactly 1 close-enough candidate mean per cluster
 - i. Ensure every candidate mean is close to a cluster mean
 - ii. Prune if too many means per cluster

Can be $O(\hat{s}\sqrt{k})$ from true cluster mean

Ingredient: Check if candidate mean $\hat{\mu}$ corresponds to cluster

of $\approx n/k$ samples w/ standard deviation \hat{s}

Pruning — Main Step

arXiv:2312.11769

Can be $O(\hat{s}\sqrt{k})$ from true cluster mean

Ingredient: Check if candidate mean $\hat{\mu}$ corresponds to cluster

of $\approx n/k$ samples w/ standard deviation \hat{s}

 $w_x \in [0,1]$ for all x in sample set Find:

such that
$$\left\| \sum_{x} w_{x} \left(x - \sum_{y} w_{y} y \right) \left(x - \sum_{y} w_{y} y \right)^{\mathsf{T}} \right\|_{\text{op}} \leq O(\hat{s}^{2}) \sum_{x} w_{x}$$
$$\sum_{x} w_{x} \geq 0.97n/k \qquad \left\| \sum_{x} w_{x} x - \hat{\mu} \right\|_{\hat{s}} \leq O(\hat{s}\sqrt{k})$$

Can be $O(\hat{s}\sqrt{k})$ from true cluster mean

Ingredient: Check if candidate mean $\hat{\mu}$ corresponds to cluster

of $\approx n/k$ samples w/ standard deviation \hat{s}

Find: $w_x \in [0,1]$ for all x in sample set

such that
$$\left\| \sum_{x} w_{x} \left(x - \sum_{y} w_{y} y \right) \left(x - \sum_{y} w_{y} y \right)^{\top} \right\|_{\text{op}} \leq O(\hat{s}^{2}) \sum_{x} w_{x}$$
Non-convex!
$$\left\| \sum_{x} w_{x} \ge 0.97n/k \right\|_{2} \leq O(\hat{s}\sqrt{k})$$

Ingredient: Check if candidate mean $\hat{\mu}$ corresponds to cluster

of $\approx n/k$ samples w/ standard deviation \hat{s}

 $w_x \in [0,1]$ for all x in sample set Find:

such that
$$\left\| \sum_{x} w_{x} \left(x - \hat{\mu} \right) \left(x - \hat{\mu} \right)^{\mathsf{T}} \right\|_{(k)} \leq O(\hat{s}^{2}k) \sum_{x} w_{x}$$

$$\sum_{x} w_x \ge 0.97n/k$$

Ky-Fan norm = $\overline{\text{sum of top-}k}$ singular/eigenvalues

- Input: $\tilde{O}((d + \log 1/\delta) k^2)$ samples, parameter k
- 1. Generate many (but poly-sized many) candidate means + s.d.

- i. Using list-decodable mean estimation
- 2. Pruning to get exactly 1 close-enough candidate mean per cluster
 - i. Ensure every candidate mean is close to a cluster mean

ii. Prune if too many means per cluster

Issue: A cluster can correspond to many remaining candidate means

Issue: A cluster can correspond to many remaining candidate means

Observation: Multiple candidate means will split a cluster,

at least one with small size ($\ll 1/k$ fraction)

Issue: A cluster can correspond to many remaining candidate means

Observation: Multiple candidate means will *split* a cluster,

at least one with small size ($\ll 1/k$ fraction)

Solution: Repeatedly cluster with nearest representative,

and prune candidate means with cluster size $\leq 0.96n/k$

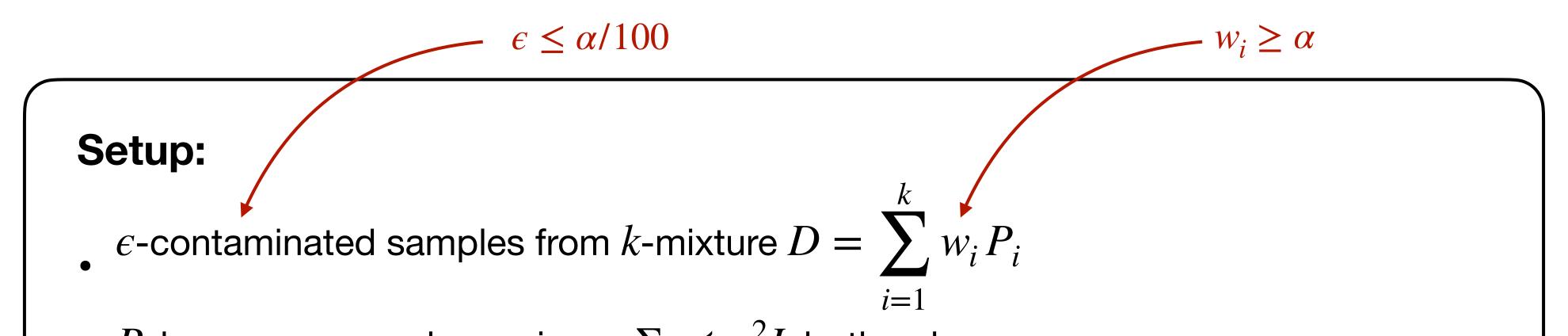
- Input: $\tilde{O}((d + \log 1/\delta) k^2)$ samples, parameter k
- 1. Generate many (but poly-sized many) candidate means + s.d.

- i. Using list-decodable mean estimation
- 2. Pruning to get exactly 1 close-enough candidate mean per cluster
 - i. Ensure every candidate mean is close to a cluster mean

ii. Prune if too many means per cluster

Robust Clustering Mixture Distributions

arXiv:2312.11769

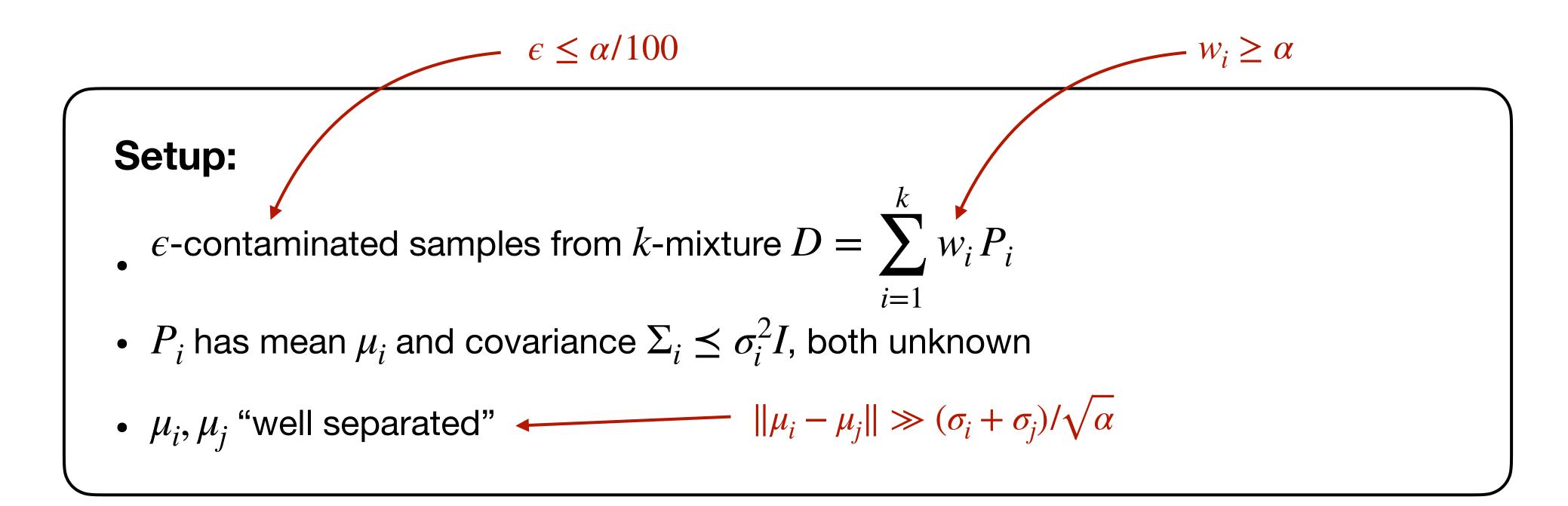


- P_i has mean μ_i and covariance $\Sigma_i \preceq \sigma_i^2 I$, both unknown
- μ_i, μ_j "well separated" \longleftarrow $\|\mu_i \mu_j\| \gg (\sigma_i + \sigma_j)/\sqrt{\alpha}$

Goal: Identify 95% of the samples correctly for every cluster

Robust Clustering Mixture Distributions

arXiv:2312.11769



Goal: Identify 95% of the same set of the same

Non-identifiability

arXiv:2312.11769

Non-identifiability

arXiv:2312.11769

Even if we know:

- k = 3
- Min weight $\alpha = 1/4$

Non-identifiability

arXiv:2312.11769

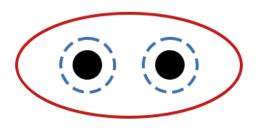
Even if we know:

- k = 3
- Min weight $\alpha = 1/4$

Even with infinite uncorrupted samples

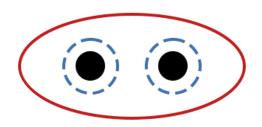
- k = 3
- Min weight $\alpha = 1/4$

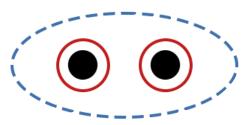
Even with infinite uncorrupted samples

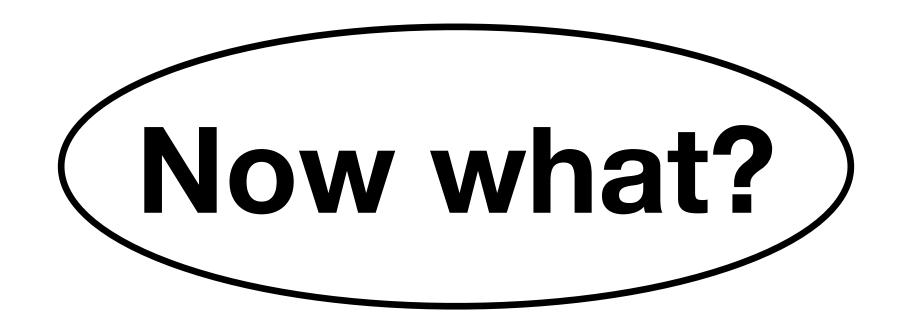


- k = 3
- Min weight $\alpha = 1/4$

Even with infinite uncorrupted samples

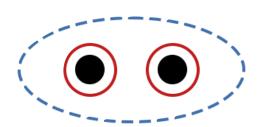


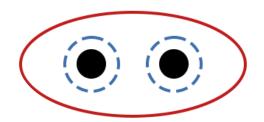




- k = 3
- Min weight $\alpha = 1/4$

Even with infinite uncorrupted samples



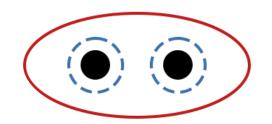




Question: What information *can* we compute about the clustering?

- k = 3
- Min weight $\alpha = 1/4$

Even with infinite uncorrupted samples

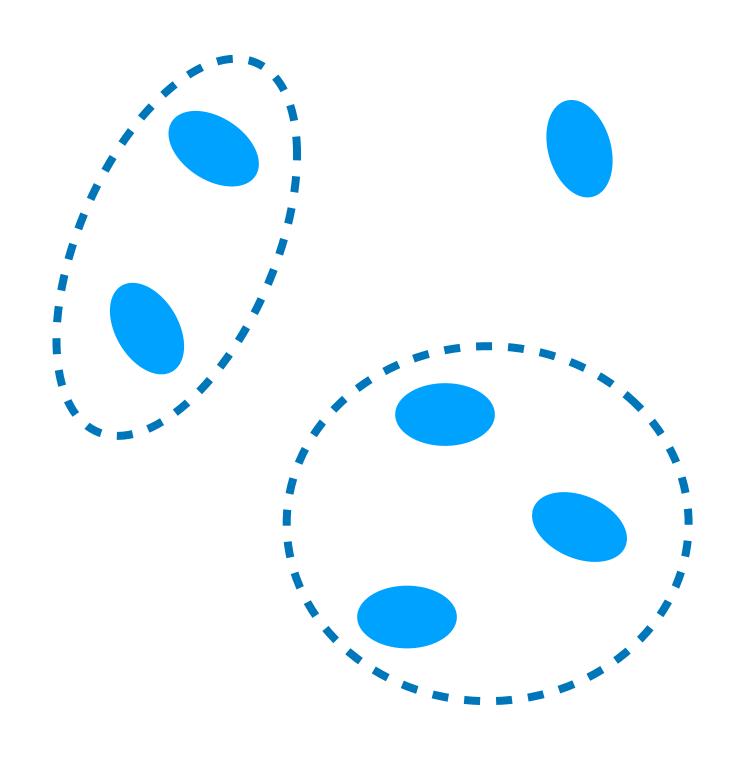


Question: What information *can* we compute about the clustering?

Maybe: Compute all sub-clusterings, except for the grouping

Definition: Given true cluster samples $S_1, ..., S_k$, totalling n samples, the disjoint subsets $B_1, ..., B_m$ form an *accurate refinement* if:

- $|B_i| \ge 0.95\alpha n$
- $\|\mu_{B_j} \mu_{B_{j'}}\| \gg (\sigma_{B_j} + \sigma_{B_{j'}})/\sqrt{\alpha}$
- They can be grouped into k sample sets S'_1, \ldots, S'_k such that
 - S_i and S_i' have 92% overlap



arXiv:2312.11769

Failure probability —

Corrupted, $\epsilon \leq \alpha/100$ $w_i \geq \alpha$

Theorem: Given $\tilde{O}((d + \log 1/\delta)/\alpha^2)$ samples from $D = \sum_i w_i P_i$

where P_i has mean μ_i and covariance $\Sigma_i \preceq \sigma_i^2 I$ (all unknown)

and
$$\|\mu_i - \mu_j\| \gg (\sigma_i + \sigma_j)/\sqrt{\alpha}$$

Algorithm returns sets B_1, \ldots, B_m that is an **accurate refinement**

of true clustering $S_1, ..., S_k$

arXiv:2312.11769

Failure probability —

Corrupted, $\epsilon \leq \alpha/100$ $w_i \geq \alpha$

Theorem: Given $\tilde{O}((d + \log 1/\delta)/\alpha^2)$ samples from $D = \sum w_i P_i$

where P_i has mean μ_i and covariance $\Sigma_i \leq \sigma_i^2 I$ (all unknown)

and
$$\|\mu_i - \mu_j\| \gg (\sigma_i + \sigma_j)/\sqrt{\alpha}$$

Algorithm returns sets B_1, \ldots, B_m that is an **accurate refinement**

of true clustering $S_1, ..., S_k$

Remarks:

arXiv:2312.11769

Failure probability —

Corrupted, $\epsilon \leq \alpha/100$ $w_i \geq \alpha$

Theorem: Given $\tilde{O}((d + \log 1/\delta)/\alpha^2)$ samples from $D = \sum_i w_i P_i$

where P_i has mean μ_i and covariance $\Sigma_i \leq \sigma_i^2 I$ (all unknown)

and
$$\|\mu_i - \mu_j\| \gg (\sigma_i + \sigma_j)/\sqrt{\alpha}$$

Algorithm returns sets B_1, \ldots, B_m that is an **accurate refinement**

of true clustering $S_1, ..., S_k$

Remarks:

One single algorithm for both theorems

arXiv:2312.11769

Failure probability —

Corrupted, $\epsilon \leq \alpha/100$ $w_i \geq \alpha$

Theorem: Given $\tilde{O}((d + \log 1/\delta)/\alpha^2)$ samples from $D = \sum_i w_i P_i$

where P_i has mean μ_i and covariance $\Sigma_i \leq \sigma_i^2 I$ (all unknown)

and
$$\|\mu_i - \mu_j\| \gg (\sigma_i + \sigma_j)/\sqrt{\alpha}$$

Algorithm returns sets B_1, \ldots, B_m that is an **accurate refinement**

of true clustering S_1, \ldots, S_k

Remarks:

Previous alg (replace k with $1/\alpha$) + distance-based pruning

One single algorithm for both theorems

Theorem — Arbitrary Mixtures

arXiv:2312.11769

Failure probability —

Corrupted, $\epsilon \leq \alpha/100$ $w_i \geq \alpha$

Theorem: Given $\tilde{O}((d + \log 1/\delta)/\alpha^2)$ samples from $D = \sum_i w_i P_i$

where P_i has mean μ_i and covariance $\Sigma_i \leq \sigma_i^2 I$ (all unknown)

and
$$\|\mu_i - \mu_j\| \gg (\sigma_i + \sigma_j)/\sqrt{\alpha}$$

Algorithm returns sets B_1, \ldots, B_m that is an **accurate refinement**

of true clustering S_1, \ldots, S_k

Remarks:

Previous alg (replace k with $1/\alpha$) + distance-based pruning

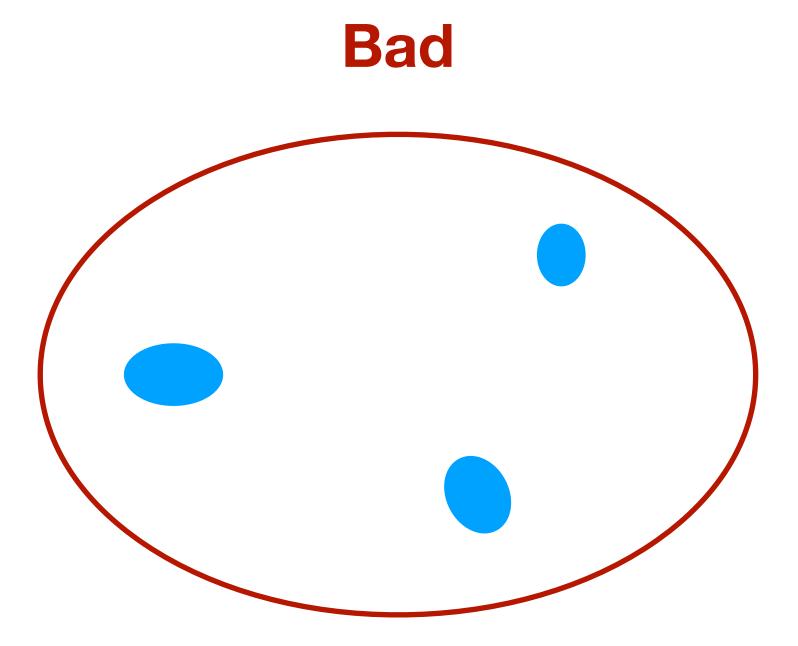
- One single algorithm for both theorems
- Corollary: existence of a common refinement for all possible clusterings

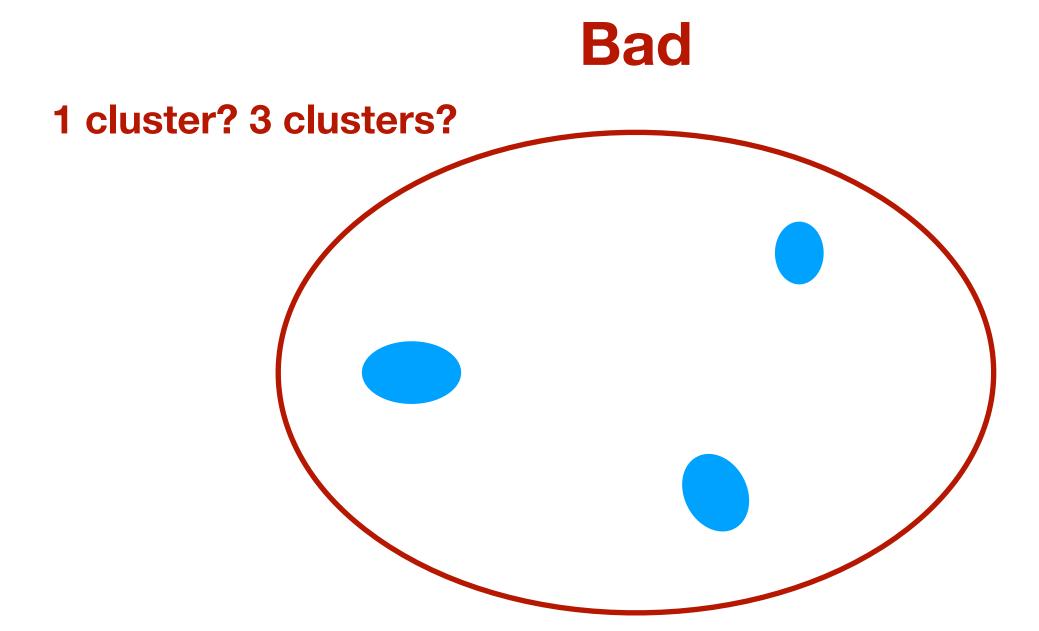
Clustering Arbitrary Mixtures

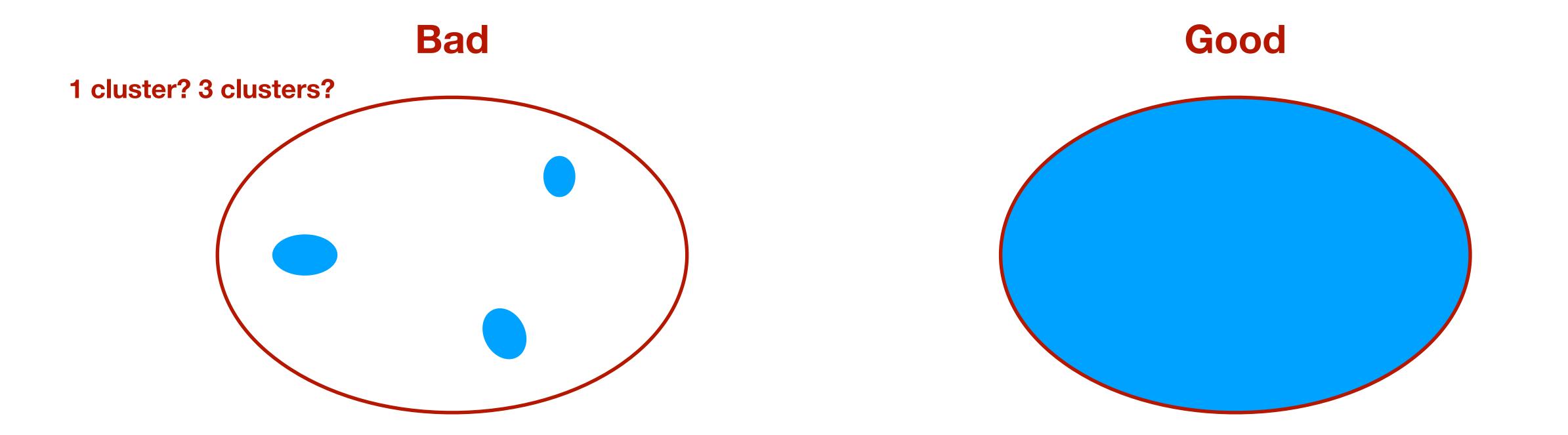
arXiv:2312.11769

Clustering Arbitrary Mixtures

arXiv:2312.11769







arXiv:2312.11769

Definition: The sample sets S_1, \ldots, S_k of total size n have "no large sub-clusters" if

For every S_i and every subset $S' \subseteq S_i$ of size $\ge 0.8\alpha n$ \longleftarrow Every large subset

We have $\sigma_{S'} \geq 0.1 \sigma_{S_i}$ Should not look lil

Should not look like its own cluster

arXiv:2312.11769

Definition: The sample sets S_1, \ldots, S_k of total size n have "no large sub-clusters" if

For every S_i and every subset $S' \subseteq S_i$ of size $\ge 0.8\alpha n$ \longleftarrow Every large subset

We have $\sigma_{S'} \ge 0.1 \sigma_{S_i}$ Should not look like its own cluster

Theorem: If the (uncorrupted) input samples have no large sub-clusters,

then **Algorithm** returns a clustering with k sets instead of a refinement.

arXiv:2312.11769

Definition: The sample sets S_1, \ldots, S_k of total size n have "no large sub-clusters" if

For every S_i and every subset $S' \subseteq S_i$ of size $\ge 0.8\alpha n$ \longleftarrow Every large subset

We have $\sigma_{S'} \ge 0.1 \sigma_{S_i}$ Should not look like its own cluster

Proposition: For well-conditioned+high-d log-concave distributions, drawing $\tilde{O}(d/\alpha^2)$ samples ensures no large sub-clusters, due to thin-shell behavior.

arXiv:2312.11769

Definition: The sample sets S_1, \ldots, S_k of total size n have "no large sub-clusters" if

For every S_i and every subset $S' \subseteq S_i$ of size $\ge 0.8\alpha n$ — Every large subset

We have $\sigma_{S'} \ge 0.1 \sigma_{S_i}$ Should not look like its own cluster

 \approx isotropic covariance \longrightarrow

Proposition: For well-conditioned+high-d log-concave distributions, drawing $\tilde{O}(d/\alpha^2)$ samples ensures no large sub-clusters, due to thin-shell behavior.

arXiv:2312.11769

Definition: The sample sets S_1, \ldots, S_k of total size n have "no large sub-clusters" if

For every S_i and every subset $S' \subseteq S_i$ of size $\ge 0.8\alpha n$ \longleftarrow Every large subset

We have $\sigma_{S'} \ge 0.1 \sigma_{S_i}$ Should not look like its own cluster

 \approx isotropic covariance

$$-d \ge \text{polylog}(1/\alpha)$$

Proposition: For well-conditioned+high-d log-concave distributions, drawing

 $\tilde{O}(d/\alpha^2)$ samples ensures no large sub-clusters, due to thin-shell behavior.

Summary

arXiv:2312.11769

 $w_i \ge \alpha$

Problem: Cluster samples from $\sum_{i} w_{i} P_{i}$ under fine-grained separation $\|\mu_{i} - \mu_{j}\| \gg (\sigma_{i} + \sigma_{j})/\sqrt{\alpha}$

– Mean μ_i , Covariance $\Sigma_i \leq \sigma_i^2 I$

arXiv:2312.11769

 $-w_i \geq \alpha$

Problem: Cluster samples from $\sum_i w_i P_i$ under fine-grained separation $\|\mu_i - \mu_j\| \gg (\sigma_i + \sigma_j)/\sqrt{\alpha}$

Mean μ_i , Covariance $\Sigma_i \leq \sigma_i^2 I$

A single poly-time algorithm such that:

- Near-uniform mixture: recovers clustering to 95% accuracy
- Arbitrary mixtures: recovers accurate refinement
- Arbitrary mixture + No Large Sub-Cluster condition: recovers clustering to 95% accuracy
- Can tolerate corruption level $\epsilon \leq \alpha/100$

arXiv:2312.11769

$$-w_i \geq \alpha$$

Problem: Cluster samples from $\sum_i w_i P_i$ under fine-grained separation $\|\mu_i - \mu_j\| \gg (\sigma_i + \sigma_j)/\sqrt{\alpha}$

Mean μ_i , Covariance $\Sigma_i \leq \sigma_i^2 I$

A single poly-time algorithm such that:

- Near-uniform mixture: recovers clustering to 95% accuracy
- Arbitrary mixtures: recovers accurate refinement
- Arbitrary mixture + No Large Sub-Cluster condition: recovers clustering to 95% accuracy
- Can tolerate corruption level $\epsilon \leq \alpha/100$

Structural:

• All ground truth clusterings of a mixture share a common refinement

arXiv:2312.11769

arXiv:2312.11769

Computational:

Current algorithm is poly-time but very slow

arXiv:2312.11769

Computational:

Current algorithm is poly-time but very slow

How far can we push separation assumption?:

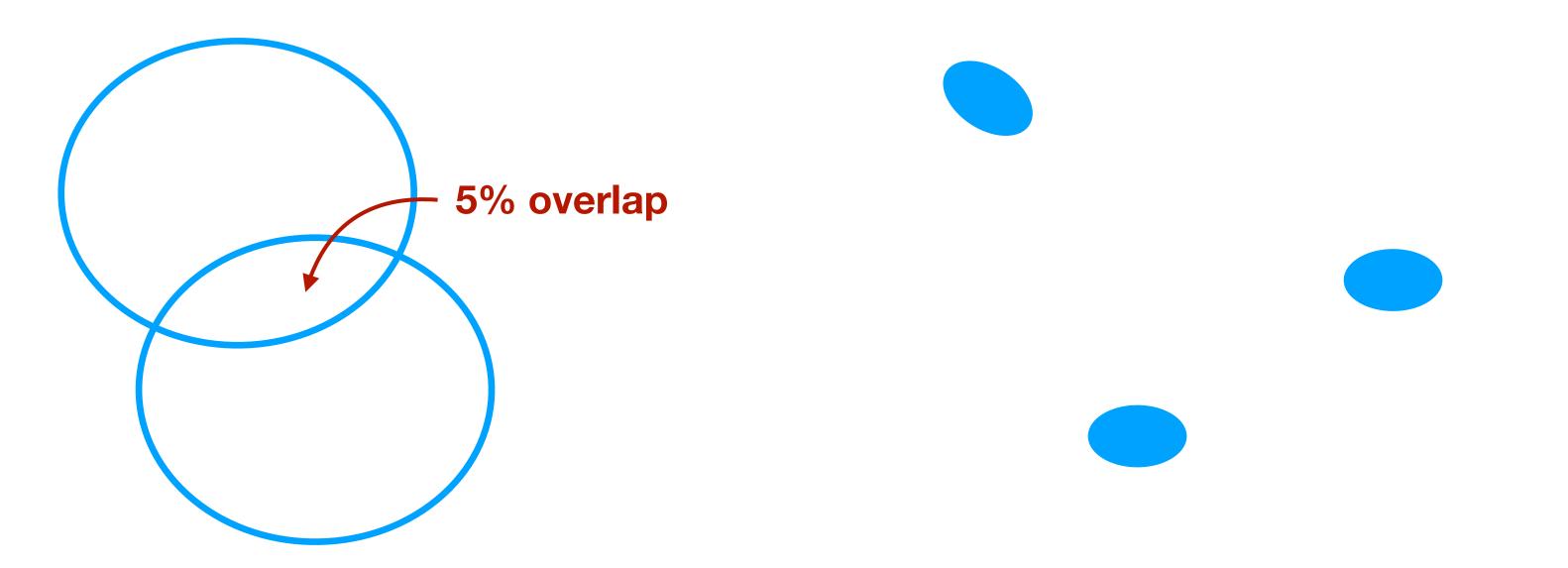
• Even for uniform mixtures, assumes $\leq 1/k$ pairwise overlap

Computational:

Current algorithm is poly-time but very slow

How far can we push separation assumption?:

• Even for uniform mixtures, assumes $\leq 1/k$ pairwise overlap



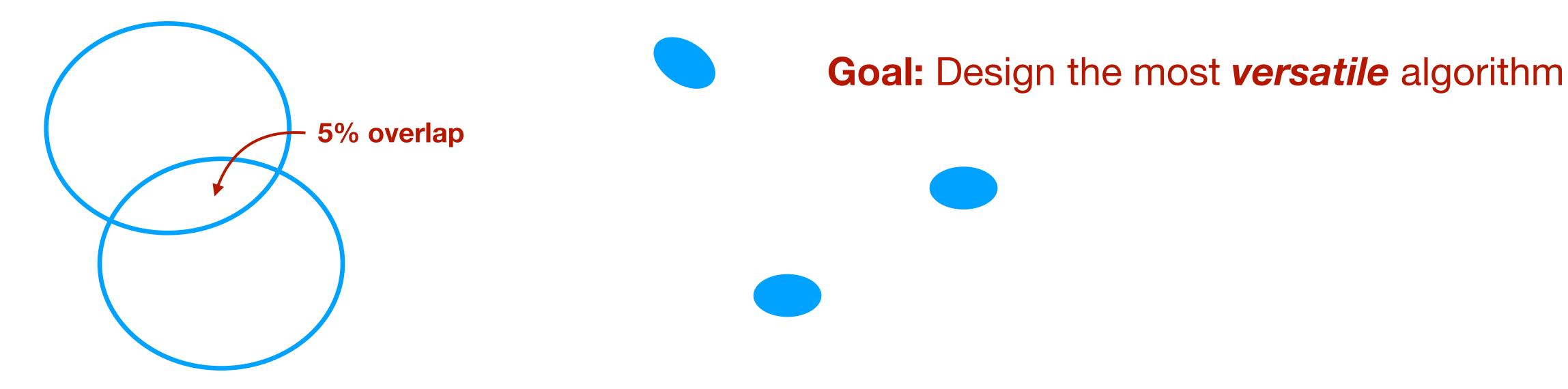
arXiv:2312.11769

Computational:

Current algorithm is poly-time but very slow

How far can we push separation assumption?:

• Even for uniform mixtures, assumes $\leq 1/k$ pairwise overlap



arXiv:2312.11769

$$w_i \geq \alpha$$

Problem: Cluster samples from $\sum_i w_i P_i$ under fine-grained separation $\|\mu_i - \mu_j\| \gg (\sigma_i + \sigma_j)/\sqrt{\alpha}$

Mean μ_i , Covariance $\Sigma_i \leq \sigma_i^2 I$

A single poly-time algorithm such that:

- Near-uniform mixture: recovers clustering to 95% accuracy
- Arbitrary mixtures: recovers accurate refinement
- Arbitrary mixture + No Large Sub-Cluster condition: recovers clustering to 95% accuracy
- Can tolerate corruption level $\epsilon \leq \alpha/100$

Structural:

• All ground truth clusterings of a mixture share a common refinement