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•  has mean  and covariance , both unknown


•  “well separated”

ϵ k D =
k

∑
i=1

wi Pi
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Goal:     Identify 95% of the samples correctly for every cluster
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Robust Clustering Mixture Distributions
ϵ ≤ min wi/100

What is the minimum 
separation?
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Prior work:


• [DKKLT22]:  separation


• [BKK22]:     separation + “No large sub-cluster” assumption

max i σi k

(σi + σj) poly(k, log n)

Our work:


• [DKLP23]:   separation(σi + σj) k

New Goal:  Between clusters , assume separationi, j ≫ (σi + σj) k

Fine-grained separation
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Theorem:  Given  samples from 


where  has mean  and covariance  (all unknown)


and 


Algorithm returns sets  such that up to index permutation:


•  overlaps with 95% of cluster  samples 


• Mean of  is  close to 

Õ((d + log 1/δ) k2) D = ∑
i

1
k

Pi

Pi μi Σi ⪯ σ2
i I

∥μi − μj∥ ≫ (σi + σj) k

B1, …, Bk

Bi i Si

Bi O(σi) μi

Failure probability Corrupted, ϵ ≤ 1/(100k)
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and 


Algorithm returns sets  such that up to index permutation:


•  overlaps with 95% of cluster  samples 


• Mean of  is  close to 

Õ((d + log 1/δ) k2) D = ∑
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1
k

Pi

Pi μi Σi ⪯ σ2
i I

∥μi − μj∥ ≫ (σi + σj) k

B1, …, Bk

Bi i Si

Bi O(σi) μi

Failure probability Corrupted, ϵ ≤ 1/(100k)

Remarks:

• Does not need to know  precisely, only need input k α ∈ [0.6/k,1/k]
• Can work for almost-uniform mixtures, with each wi ∈ [0.9/k,1.1/k]
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Observation:  Suffices to find the component means, and cluster by nearest representative

μi μj

≫ (σi + σj) k

at most  
fraction

1/k



arXiv:2312.11769

Jasper Lee 7Clustering Bounded Covariance Mixtures

Algorithm Outline

Algorithm:  



arXiv:2312.11769

Jasper Lee 7Clustering Bounded Covariance Mixtures

Algorithm Outline

Algorithm:  

• Input:  samples, parameter Õ((d + log 1/δ) k2) k
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Algorithm:  

• Input:  samples, parameter Õ((d + log 1/δ) k2) k

1. Generate many (but poly-sized many) candidate means

i. Using list-decodable mean estimation

2. Pruning to get exactly 1 close-enough candidate mean per cluster

i. Ensure every candidate mean is close to a cluster mean

ii. Prune if too many means per cluster
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List-Decodable Mean Estimation

Caveat:   DKKLT22 requires knowing  to constant factor.σ

Solution:   First generate a -sized list of candidate ,


  then run DKKLT22 using all candidate standard deviations

poly(n) σi

Use α ≈ 1/k
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Algorithm:  


• Input:  samples, parameter 


1. Generate many (but poly-sized many) candidate means + s.d.


i. Using list-decodable mean estimation


2. Pruning to get exactly 1 close-enough candidate mean per cluster


i. Ensure every candidate mean is close to a cluster mean


ii. Prune if too many means per cluster

Õ((d + log 1/δ) k2) k
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Pruning — Main Step

Ingredient:    Check if candidate mean  corresponds to cluster 


of  samples w/ standard deviation 

̂μ

≈ n/k ̂s

Find:

such that

 for all  in sample setwx ∈ [0,1] x

∑
x

wx (x − ̂μ) (x − ̂μ)⊤

(k)

≤ O( ̂s2k)

∑
x

wx ≥ 0.97n/k

∑
x

wx

Ky-Fan norm = sum of top-  singular/eigenvaluesk
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Pruning — By Mass

Issue:     A cluster can correspond to many remaining candidate means 

Observation:   Multiple candidate means will split a cluster,


 at least one with small size (  fraction)≪ 1/k

Solution:   Repeatedly cluster with nearest representative,


 and prune candidate means with cluster size ≤ 0.96n/k
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Algorithm:  


• Input:  samples, parameter 
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i. Ensure every candidate mean is close to a cluster mean


ii. Prune if too many means per cluster

Õ((d + log 1/δ) k2) k
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Non-identifiability

Even if we know:


• 


• Min weight 

k = 3
α = 1/4

Even with infinite uncorrupted samples

Question:      What information can we compute about the clustering?

Maybe:      Compute all sub-clusterings, except for the grouping
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Clustering Refinement

Definition:  Given true cluster samples , totalling  samples,


the disjoint subsets  form an accurate refinement if:


• 


• 


• They can be grouped into  sample sets  such that


•  and  have 92% overlap

S1, …, Sk n

B1, …, Bm

|Bj | ≥ 0.95αn

∥μBj
− μBj′￼

∥ ≫ (σBj
+ σBj′￼

)/ α

k S′￼1, …, S′￼k

Si S′￼i
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Theorem:  Given  samples from 


where  has mean  and covariance  (all unknown)


and 


Algorithm returns sets  that is an accurate refinement 

          of true clustering 

Õ((d + log 1/δ)/α2) D = ∑
i

wiPi

Pi μi Σi ⪯ σ2
i I

∥μi − μj∥ ≫ (σi + σj)/ α

B1, …, Bm

S1, …, Sk

Failure probability Corrupted, ϵ ≤ α/100 wi ≥ α
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Theorem — Arbitrary Mixtures

Theorem:  Given  samples from 


where  has mean  and covariance  (all unknown)


and 


Algorithm returns sets  that is an accurate refinement 

          of true clustering 

Õ((d + log 1/δ)/α2) D = ∑
i

wiPi

Pi μi Σi ⪯ σ2
i I

∥μi − μj∥ ≫ (σi + σj)/ α

B1, …, Bm

S1, …, Sk

Failure probability Corrupted, ϵ ≤ α/100

Remarks:
• One single algorithm for both theorems
• Corollary: existence of a common refinement for all possible clusterings

Previous alg (replace  with ) + distance-based pruningk 1/α

wi ≥ α
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Question:  What is a sufficient assumption to compute a clustering not just a refinement?
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No Large Sub-Cluster Condition

Definition:  The sample sets  of total size  have “no large sub-clusters” if


For every  and every subset  of size 


We have 

S1, …, Sk n

Si S′￼ ⊆ Si ≥ 0.8αn

σS′￼
≥ 0.1σSi

Every large subset

Should not look like its own cluster
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We have 

S1, …, Sk n

Si S′￼ ⊆ Si ≥ 0.8αn
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Every large subset

Should not look like its own cluster

Theorem:  If the (uncorrupted) input samples have no large sub-clusters,


then Algorithm returns a clustering with  sets instead of a refinement.k
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No Large Sub-Cluster Condition

Definition:  The sample sets  of total size  have “no large sub-clusters” if


For every  and every subset  of size 


We have 

S1, …, Sk n

Si S′￼ ⊆ Si ≥ 0.8αn

σS′￼
≥ 0.1σSi

Every large subset

Should not look like its own cluster

Proposition:  For well-conditioned+high-d log-concave distributions, drawing


 samples ensures no large sub-clusters, due to thin-shell behavior.Õ(d/α2)

d ≥ polylog(1/α) isotropic covariance≈
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Summary

Problem:  Cluster samples from  under fine-grained separation ∑
i

wi Pi ∥μi − μj∥ ≫ (σi + σj)/ α

wi ≥ α

Mean , Covariance μi Σi ⪯ σ2
i I
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Summary

A single poly-time algorithm such that:


• Near-uniform mixture: recovers clustering to 95% accuracy


• Arbitrary mixtures: recovers accurate refinement 

• Arbitrary mixture + No Large Sub-Cluster condition: recovers clustering to 95% accuracy


• Can tolerate corruption level ϵ ≤ α/100
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Structural:


• All ground truth clusterings of a mixture share a common refinement
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Open Problems
Computational:


• Current algorithm is poly-time but very slow

How far can we push separation assumption?:


• Even for uniform mixtures, assumes  pairwise overlap≤ 1/k

5% overlap

Goal: Design the most versatile algorithm
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Summary

Problem:  Cluster samples from  under fine-grained separation ∑
i

wi Pi ∥μi − μj∥ ≫ (σi + σj)/ α

wi ≥ α

A single poly-time algorithm such that:


• Near-uniform mixture: recovers clustering to 95% accuracy


• Arbitrary mixtures: recovers accurate refinement 

• Arbitrary mixture + No Large Sub-Cluster condition: recovers clustering to 95% accuracy


• Can tolerate corruption level 


Structural:


• All ground truth clusterings of a mixture share a common refinement

ϵ ≤ α/100

Mean , Covariance μi Σi ⪯ σ2
i I


