Introduction 0000000 Barrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computations

Full Clustering

Clustering Mixtures with Almost Optimal Separation in Polynomial Time

Allen Liu (MIT)

Joint work with Jerry Li (Microsoft Research)

Introduction Barrier to Previous Approach

mplicit Moment Estimation

Implicit Moment Computation

Full Clustering

(Gaussian) Mixture Models

Mixture Models

Given a class of distributions \mathcal{D} , a mixture of k elements from \mathcal{D} is a distribution of the form

$$\mathcal{M} = \sum_{i=1}^k w_i D_i \; ,$$

where $D_1, \ldots, D_k \in \mathcal{D}$, and w_i satisfy $w_i \ge 0$ and $\sum_{i=1}^k w_i = 1$.

Mixture Models

Given a class of distributions \mathcal{D} , a mixture of k elements from \mathcal{D} is a distribution of the form

$$\mathcal{M} = \sum_{i=1}^k w_i D_i \; ,$$

where $D_1, \ldots, D_k \in \mathcal{D}$, and w_i satisfy $w_i \ge 0$ and $\sum_{i=1}^k w_i = 1$.

Gaussian Mixture Models (GMMs): $\mathcal{D} = \{N(\mu, \Sigma)\}.$

Mixture Models

Given a class of distributions $\mathcal{D},$ a mixture of k elements from \mathcal{D} is a distribution of the form

$$\mathcal{M} = \sum_{i=1}^k w_i D_i \; ,$$

where $D_1, \ldots, D_k \in \mathcal{D}$, and w_i satisfy $w_i \ge 0$ and $\sum_{i=1}^k w_i = 1$.

Gaussian Mixture Models (GMMs): $\mathcal{D} = \{N(\mu, \Sigma)\}.$

When $\Sigma = I$, these are known as *isotropic GMMs*

Mixture Models

Given a class of distributions \mathcal{D} , a mixture of k elements from \mathcal{D} is a distribution of the form

$$\mathcal{M} = \sum_{i=1}^{\kappa} w_i D_i \; ,$$

where $D_1, \ldots, D_k \in \mathcal{D}$, and w_i satisfy $w_i \ge 0$ and $\sum_{i=1}^k w_i = 1$.

Gaussian Mixture Models (GMMs): $\mathcal{D} = \{N(\mu, \Sigma)\}.$

When $\Sigma = I$, these are known as *isotropic GMMs*

Mixture models and GMMs are well-studied theoretically, and popular in practice as a way to model heterogeneous data.

Introduction	Barrier to Previous Approaches	Implicit Moment Estimation	Implicit Moment Compu
000000	000	000000000000	000000000000

Clustering mixture models

Introduction 0●00000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
<u> </u>				

Clustering mixture models

Given samples X_1, \ldots, X_n from a GMM (or any mixture model), can we *cluster* the samples, i.e. group the samples that came from the same components together?

Introduction 000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering
Clustor	na mixtura ma	dolo		

Clustering mixture models

Given samples X_1, \ldots, X_n from a GMM (or any mixture model), can we *cluster* the samples, i.e. group the samples that came from the same components together?

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Cluste

Separation conditions

~				
Introduction	Barrier to Previous Appro	aches Implicit Moment Estimation	Implicit Moment Computations	Full Clustering
0000000	000	0000000000000		00000

Separation conditions

Need separation in TV-distance between components for clustering to be possible information-theoretically

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clusterir 00000

Separation Conditions

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Separat	ion Conditions			

For isotropic GMMs, we need component means to be separated

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Separat	ion Conditions			

For isotropic GMMs, we need component means to be separated

Let $\mathcal{M} = \sum_{i=1}^{k} w_i N(\mu_i, I)$ be a mixture of k isotropic Gaussians, and define

$$\Delta = \min_{i\neq j} \|\mu_i - \mu_j\|_2 \; .$$

0000000	000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000
C				

Separation Conditions

For isotropic GMMs, we need component means to be separated

Let $\mathcal{M} = \sum_{i=1}^{k} w_i \mathcal{N}(\mu_i, I)$ be a mixture of k isotropic Gaussians, and define

$$\Delta = \min_{i\neq j} \|\mu_i - \mu_j\|_2 \; .$$

Main Question

What is the minimum Δ you need to *efficiently* cluster?

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000

The information theoretic limit

Introduction 0000000	Barrier to Previous Approaches	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
	· · · · · · · · · · · · · · · · · · ·	and the second		

The information theoretic limit

For simplicity, assume that mixing weights are uniform i.e. $w_i = 1/k$ for all i = 1, ..., k.

The results do not qualitatively change for general mixing weights.

Introduction 0000●00	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
	c it ii	and the second		

The information theoretic limit

For simplicity, assume that mixing weights are uniform i.e. $w_i = 1/k$ for all i = 1, ..., k.

The results do not qualitatively change for general mixing weights.

Fact [Regev, Vijayaraghavan 2017]

 $\Delta = \Theta(\sqrt{\log k})$ is both necessary and sufficient to obtain a clustering that is 99% accurate with high probability.

Introduction

rrier to Previous Approaches

mplicit Moment Estimation

Implicit Moment Computation

Full Clustering

What about computationally efficient methods?

Introduction 00000●0	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clust

Clustering is easy in 1-dimension.

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clusterii 00000

Clustering is easy in 1-dimension.

In high dimensions, we can brute-force search in $\exp(d)$ time (where d is the dimensionality of the data). What can we achieve with efficient methods?

Introduction 00000●0	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000

Clustering is easy in 1-dimension.

In high dimensions, we can brute-force search in $\exp(d)$ time (where d is the dimensionality of the data). What can we achieve with efficient methods?

[Dasgupta, 1999]: $\Delta = \Omega(d^{1/2})$ in time poly(d, k).

0000000	000	000000000000	00000000000	00000

Clustering is easy in 1-dimension.

In high dimensions, we can brute-force search in $\exp(d)$ time (where d is the dimensionality of the data). What can we achieve with efficient methods?

[Dasgupta, 1999]: $\Delta = \Omega(d^{1/2})$ in time poly(d, k). **[Vempala, Wang 2004]:** $\Delta = \Omega(min(d^{1/4}, k^{1/4}))$ in time poly(d, k).

0000000	000	00000	0000000	000000	00000	00000
X A /I			<i>cc</i> • •		1.0	

Clustering is easy in 1-dimension.

In high dimensions, we can brute-force search in $\exp(d)$ time (where d is the dimensionality of the data). What can we achieve with efficient methods?

[Dasgupta, 1999]: $\Delta = \Omega(d^{1/2})$ in time poly(d, k). **[Vempala, Wang 2004]:** $\Delta = \Omega(min(d^{1/4}, k^{1/4}))$ in time poly(d, k).

[Diakonikolas, Kane, Stewart 2018], [Kothari, Steinhardt, Steurer 2018], [Hopkins, Li 2018]

• All get $\Delta = \Omega(k^{\epsilon})$ in time $\operatorname{poly}(d, k^{\operatorname{poly}(1/\epsilon)})$

0000000	000	00000	0000000	000000	00000	00000
X A /I			<i>cc</i> • •		1.0	

Clustering is easy in 1-dimension.

In high dimensions, we can brute-force search in $\exp(d)$ time (where d is the dimensionality of the data). What can we achieve with efficient methods?

[Dasgupta, 1999]: $\Delta = \Omega(d^{1/2})$ in time poly(d, k). **[Vempala, Wang 2004]:** $\Delta = \Omega(min(d^{1/4}, k^{1/4}))$ in time poly(d, k).

[Diakonikolas, Kane, Stewart 2018], [Kothari, Steinhardt, Steurer 2018], [Hopkins, Li 2018]

• All get $\Delta = \Omega(k^{\epsilon})$ in time $\operatorname{poly}(d, k^{\operatorname{poly}(1/\epsilon)})$

Question

Can we cluster in polynomial time down to the information theoretic limit?

Introduction 000000●	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Main F	?ecult			

Introduction	Barrier to Previous Approaches	Implicit Moment Estimation	Impl
000000	000	000000000000	oòo

Main Result

Theorem

Let c > 0, and let \mathcal{M} be a (uniform) mixture of isotropic Gaussians with separation $\Delta = \Omega(\log^{1/2+c} k)$. Then, there is an algorithm which takes $n = \operatorname{poly}(k, d)$ samples from \mathcal{M} and runs in time $\operatorname{poly}(k, d)$, and which recovers a perfect clustering of the samples with high probability.

Introduction	Barrier to Previous Approaches	Implicit Moment Estimation
000000	000	000000000000

Main Result

Theorem

Let c > 0, and let \mathcal{M} be a (uniform) mixture of isotropic Gaussians with separation $\Delta = \Omega(\log^{1/2+c} k)$. Then, there is an algorithm which takes $n = \operatorname{poly}(k, d)$ samples from \mathcal{M} and runs in time $\operatorname{poly}(k, d)$, and which recovers a perfect clustering of the samples with high probability.

• Our algorithm also works for non-uniform mixtures.

Introduction
0000000

Main Result

Theorem

Let c > 0, and let \mathcal{M} be a (uniform) mixture of isotropic Gaussians with separation $\Delta = \Omega(\log^{1/2+c} k)$. Then, there is an algorithm which takes $n = \operatorname{poly}(k, d)$ samples from \mathcal{M} and runs in time $\operatorname{poly}(k, d)$, and which recovers a perfect clustering of the samples with high probability.

- Our algorithm also works for non-uniform mixtures.
- We can also handle mixtures of shifts of any distribution *D* satisfying the Poincaré inequality under a mild additional condition

Introduction 0000000	Barrier to Previous Approaches	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering
Outline				

• The barrier to existing approaches

Our techniques

- Implicit Moment Estimation
- Implicit Moment Computation
- Putting it all together

Introduction 0000000	Barrier to Previous Approaches O●O	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000

Method of Moments

Introduction 0000000	Barrier to Previous Approaches O●O	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Method	of Moments			

At a high-level:

• Measure moments of the mixture \mathcal{M} i.e. $\mathbb{E}_{X \sim \mathcal{M}}[X^{\otimes t}]$

Introduction 0000000	Barrier to Previous Approaches O●O	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Method	of Moments			

At a high-level:

• Measure moments of the mixture \mathcal{M} i.e. $\mathbb{E}_{X \sim \mathcal{M}}[X^{\otimes t}]$

If moments are distorted compared to those of a standard Gaussian then we can cluster

Introduction 0000000	Barrier to Previous Approaches O●O	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Method	d of Moments			

At a high-level:

• Measure moments of the mixture \mathcal{M} i.e. $\mathbb{E}_{X \sim \mathcal{M}}[X^{\otimes t}]$

If moments are distorted compared to those of a standard Gaussian then we can cluster

3 If separation between means is $\Omega(k^{\epsilon})$ then we need to measure moments of degree $1/\epsilon$ to detect distortions

Introduction 0000000 Barrier to Previous Approaches

mplicit Moment Estimation

Implicit Moment Computation

Full Clustering

The barrier to reaching polylogarithmic separation

The barrier to reaching polylogarithmic separation

Barrier: Clustering with separation $\Omega(k^{\epsilon})$ requires degree $1/\epsilon$ moments
The barrier to reaching polylogarithmic separation

Barrier: Clustering with separation $\Omega(k^{\epsilon})$ requires degree $1/\epsilon$ moments

To get separation $poly(\log k)$, this corresponds to taking degree $t = \Theta(\log k / \log \log k)$ moments.

The barrier to reaching polylogarithmic separation

Barrier: Clustering with separation $\Omega(k^{\epsilon})$ requires degree $1/\epsilon$ moments

To get separation $poly(\log k)$, this corresponds to taking degree $t = \Theta(\log k / \log \log k)$ moments.

Problem

The moment tensor $\mathbb{E}_{X \sim \mathcal{M}}[X^{\otimes t}]$ requires a quasipolynomial number of samples to estimate accurately.

The barrier to reaching polylogarithmic separation

Barrier: Clustering with separation $\Omega(k^{\epsilon})$ requires degree $1/\epsilon$ moments

To get separation $poly(\log k)$, this corresponds to taking degree $t = \Theta(\log k / \log \log k)$ moments.

Problem

The moment tensor $\mathbb{E}_{X \sim \mathcal{M}}[X^{\otimes t}]$ requires a quasipolynomial number of samples to estimate accurately.

Problem

The moment tensor $\mathbb{E}_{X \sim \mathcal{M}}[X^{\otimes t}]$ requires quasipolynomial time to write down.

Outline

• The barrier to existing approaches

• Our techniques

- Implicit Moment Estimation
- Implicit Moment Computation
- Putting it all together

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations

Our Approach

Introduction 0000000	Barrier to Previous Approaches	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Our Ap	proach			

We will still use information about moments of degree $t = \Theta(\log k / \log \log k)$

Introduction 0000000	Barrier to Previous Approaches	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Our Ap	proach			

We will still use information about moments of degree $t = \Theta(\log k / \log \log k)$

We develop new techniques for accessing/manipulating this information more efficiently

ntroduction	Barrier to	Previous	Approaches	Ir
000000	000			C

mplicit Moment Estimation

Implicit Moment Computation

Full Clustering

Important Ingredients

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Importa	ant Ingredients			

• Estimating degree $t = \Theta(\log k / \log \log k)$ moments accurately

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Importa	nt Ingredients			

Stimating degree $t = \Theta(\log k / \log \log k)$ moments accurately

Representing the degree t = Θ(log k/ log log k) moment tensor efficiently

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000

Important Ingredients

- Stimating degree $t = \Theta(\log k / \log \log k)$ moments accurately
 - We show certain projections of the moment tensor have *polynomially bounded variance*
 - We can estimate these projections sample-efficiently

Representing the degree t = Θ(log k/log log k) moment tensor efficiently

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000

Important Ingredients

- Stimating degree $t = \Theta(\log k / \log \log k)$ moments accurately
 - We show certain projections of the moment tensor have *polynomially bounded variance*
 - We can estimate these projections sample-efficiently

- Representing the degree t = Θ(log k/log log k) moment tensor efficiently
 - We only need to perform a restricted set of operations on the moment tensor
 - These can be performed implicitly in polynomial time

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000

Important Ingredients

Stimating degree $t = \Theta(\log k / \log \log k)$ moments accurately

- We show certain projections of the moment tensor have *polynomially bounded variance*
- We can estimate these projections sample-efficiently

- Representing the degree t = Θ(log k/log log k) moment tensor efficiently
 - We only need to perform a restricted set of operations on the moment tensor
 - These can be performed implicitly in polynomial time

Introduction 0000000 arrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computation

Full Clustering 00000

Reducing to the difference mixture

Introduction Barrier to Previous Approaches Implicit Moment Estimation

Implicit Moment Computations

Full Clustering

Reducing to the difference mixture

Instead of working directly with the mixture $\mathcal{M} = \sum_{i=1}^{k} \frac{1}{k} N(\mu_i, I)$, we will work with the *difference mixture*

Barrier to Previous Approaches Im 000

Introduction

Implicit Moment Estimation

Implicit Moment Computations

Full Clustering

Reducing to the difference mixture

Instead of working directly with the mixture $\mathcal{M} = \sum_{i=1}^{k} \frac{1}{k} N(\mu_i, I)$, we will work with the *difference mixture*

Difference Mixture: distribution of the random variable $Y = (X - X')/\sqrt{2}$, for $X, X' \sim \mathcal{M}$.

Introduction Ba

Barrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computations

Full Clustering

Reducing to the difference mixture

Instead of working directly with the mixture $\mathcal{M} = \sum_{i=1}^{k} \frac{1}{k} N(\mu_i, I)$, we will work with the *difference mixture*

Difference Mixture: distribution of the random variable $Y = (X - X')/\sqrt{2}$, for $X, X' \sim \mathcal{M}$.

This is a new isotropic GMM with k(k-1) + 1 components

- One component has mean 0
- The rest have mean that is at least Δ -far from 0.

ntroduction Bar 0000000 00

Barrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computations

Full Clustering

Reducing to the difference mixture

Instead of working directly with the mixture $\mathcal{M} = \sum_{i=1}^{k} \frac{1}{k} N(\mu_i, I)$, we will work with the *difference mixture*

Difference Mixture: distribution of the random variable $Y = (X - X')/\sqrt{2}$, for $X, X' \sim \mathcal{M}$.

This is a new isotropic GMM with k(k-1) + 1 components

- One component has mean 0
- The rest have mean that is at least Δ -far from 0.

Let ${\mathcal M}$ be the difference mixture for the rest of this talk

Introduction 0000000 rrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computation 000000000000 Full Clustering

Reducing to the difference mixture (cont.)

Reducing to the difference mixture (cont.)

To cluster the original mixture, it suffices to, detect if a sample comes from the 0 component or another component.

Reducing to the difference mixture (cont.)

To cluster the original mixture, it suffices to, detect if a sample comes from the 0 component or another component.

Let $\mathcal{M} = w_0 N(0, I) + \sum_{i=1}^k w_i N(\mu_i, I)$ be a difference mixture, so that:

- $w_i \geq 1/\text{poly}(k)$
- $\|\mu_i\|_2 \geq \Delta$

Reducing to the difference mixture (cont.)

To cluster the original mixture, it suffices to, detect if a sample comes from the 0 component or another component.

Let $\mathcal{M} = w_0 N(0, I) + \sum_{i=1}^k w_i N(\mu_i, I)$ be a difference mixture, so that:

• $w_i \geq 1/\text{poly}(k)$

•
$$\|\mu_i\|_2 \geq \Delta$$

Problem

Let X_1, \ldots, X_n be a set of polynomially many samples from \mathcal{M} . Given a new sample $X' \sim \mathcal{M}$, distinguish between the case where $X' \sim N(0, I)$, and $X' \sim N(\mu_i, I)$, for some $i \geq 1$.

Reducing to the difference mixture (cont.)

To cluster the original mixture, it suffices to, detect if a sample comes from the 0 component or another component.

Let $\mathcal{M} = w_0 N(0, I) + \sum_{i=1}^k w_i N(\mu_i, I)$ be a difference mixture, so that: • $w_i \ge 1/\text{poly}(k)$

•
$$w_i \geq 1/\text{poly}(k)$$

•
$$\|\mu_i\|_2 \geq \Delta$$

Problem

Let X_1, \ldots, X_n be a set of polynomially many samples from \mathcal{M} . Given a new sample $X' \sim \mathcal{M}$, distinguish between the case where $X' \sim N(0, I)$, and $X' \sim N(\mu_i, I)$, for some $i \geq 1$.

For simplicity, also assume that $\Delta = \text{poly}(\log k)$, and $\|\mu_i\|_2 = \text{poly}(\log k)$, for all *i*.

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Test Fu	nctions			

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering
Test Fi	unctions			

Goal: design a test function for distinguishing

• Given a sample $X \sim \mathcal{M}$, we compute the test function f(X)

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Test Fi	unctions			

Goal: design a test function for distinguishing

• Given a sample $X \sim \mathcal{M}$, we compute the test function f(X)

We want the following properties:

- f(X) is small with high probability if X is from the 0-component
- If (X) is large with high probability if X is from a component with mean bounded away from 0

Introduction 0000000	Barrier to Previous Approaches	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Test Fi	Inctions			

Goal: design a test function for distinguishing

• Given a sample $X \sim \mathcal{M}$, we compute the test function f(X)

We want the following properties:

- f(X) is small with high probability if X is from the 0-component
- If (X) is large with high probability if X is from a component with mean bounded away from 0

Test function f will be a polynomial of degree t. The key will be to bound the variance.

Introduction 0000000 arrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computation

Full Clustering

The Hermite polynomial tensor

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering
The He	rmite polvnom	ial tensor		

• In 1D, Hermite polynomials are $h_{m+1}(x) = xh_m(x) - mh_{m-1}(x)$

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
The He	rmite polynomia	al tensor		

- In 1D, Hermite polynomials are $h_{m+1}(x) = xh_m(x) mh_{m-1}(x)$
- $h_1(x) = x, h_2(x) = x^2 1, h_3(x) = x^3 3x, \dots$

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
The Her	rmite polynomia	l tensor		

- In 1D, Hermite polynomials are $h_{m+1}(x) = xh_m(x) mh_{m-1}(x)$
- $h_1(x) = x, h_2(x) = x^2 1, h_3(x) = x^3 3x, \dots$
- Key property: $\mathbb{E}_{x \sim N(\mu, 1)}[h_t(x)] = \mu^t$

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
The Her	mite polynomia	l tensor		

- In 1D, Hermite polynomials are $h_{m+1}(x) = xh_m(x) mh_{m-1}(x)$
- $h_1(x) = x, h_2(x) = x^2 1, h_3(x) = x^3 3x, \dots$
- Key property: $\mathbb{E}_{x \sim \mathcal{N}(\mu, 1)}[h_t(x)] = \mu^t$

• In higher dimensions we can construct an analog h_t where $h_t(X)$ for $X \in \mathbb{R}^d$ is a tensor in $\mathbb{R}^{d^{\otimes t}}$ that is a polynomial in X

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
The Her	mite polynomia	l tensor		

- In 1D, Hermite polynomials are $h_{m+1}(x) = xh_m(x) mh_{m-1}(x)$
- $h_1(x) = x, h_2(x) = x^2 1, h_3(x) = x^3 3x, \dots$
- Key property: $\mathbb{E}_{x \sim \mathcal{N}(\mu, 1)}[h_t(x)] = \mu^t$

• In higher dimensions we can construct an analog h_t where $h_t(X)$ for $X \in \mathbb{R}^d$ is a tensor in $\mathbb{R}^{d^{\otimes t}}$ that is a polynomial in X

•
$$h_1(x) = X, h_2(x) = X^{\otimes 2} - I_{d \times d}, h_3(X) = X^{\otimes 3} - \sum_{sym} I_{d \times d} \otimes X, \ldots$$

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
The Her	mite polynomia	l tensor		

- In 1D, Hermite polynomials are $h_{m+1}(x) = xh_m(x) mh_{m-1}(x)$
- $h_1(x) = x, h_2(x) = x^2 1, h_3(x) = x^3 3x, \dots$
- Key property: $\mathbb{E}_{x \sim N(\mu, 1)}[h_t(x)] = \mu^t$

• In higher dimensions we can construct an analog h_t where $h_t(X)$ for $X \in \mathbb{R}^d$ is a tensor in $\mathbb{R}^{d^{\otimes t}}$ that is a polynomial in X

•
$$h_1(x) = X, h_2(x) = X^{\otimes 2} - I_{d \times d}, h_3(X) = X^{\otimes 3} - \sum_{sym} I_{d \times d} \otimes X, \dots$$

• Key property: $\mathbb{E}_{X \sim N(\mu, l)}[h_t(X)] = \mu^{\otimes t}$

Introduction 0000000 rrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computation 000000000000 Full Clustering

Properties of the Hermite polynomial tensor

Introduction Barrier to Previous Approaches Implicit Moment Estimation

Implicit Moment Computations

Full Clustering

Properties of the Hermite polynomial tensor

• $h_t(X)$ is an unbiased estimator for $\mu^{\otimes t}$
Introduction 0000000	Barrier 000	r to Previous A	pproaches	Implicit 0000	Moment Estima 0000000000	ation	Implicit Moment Computations	Full Clustering 00000
D		C . 1		• .				

Properties of the Hermite polynomial tensor

• $h_t(X)$ is an unbiased estimator for $\mu^{\otimes t}$

• It has bounded variance, i.e. for any $v \in \mathbb{R}^{d^t}$ with $\|v\| = 1$,

$$\mathop{\mathbb{E}}_{X \sim \mathcal{N}(0,I)} \left[\langle v, h_t(X)
angle^2
ight] \leq O(t)^t = \operatorname{poly}(k) \ .$$

0000000	Barrie 000	r to Previous A	Approaches	Implicit 0000	0000000000	ation	Implicit Moment Computations	OOOOO
D		C . I	1.1		1.1			

Properties of the Hermite polynomial tensor

• $h_t(X)$ is an unbiased estimator for $\mu^{\otimes t}$

• It has bounded variance, i.e. for any $v \in \mathbb{R}^{d^t}$ with $\|v\| = 1$,

$$\mathop{\mathbb{E}}_{X \sim N(0,I)} \left[\langle v, h_t(X) \rangle^2 \right] \leq O(t)^t = \operatorname{poly}(k) \ .$$

• It reliably witnesses large means, i.e. if $\|\mu\| \ge \Omega(t^{1/2})$ and $X \sim N(\mu, I)$, then with high probability,

$$\langle h_t(X), \mu^{\otimes t} \rangle \geq (0.8 \, \|\mu\|)^{2t} \geq \operatorname{poly}(k) \; .$$

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Initial A	ttempt			

0000000 000		000000000000000000000000000000000000000	000000000000	00000
0000000 000	to Previous Approaches			OOOOO

Properties of the Hermite Polynomial Tensor

• Bounded Variance: for all unit vectors $v \in \mathbb{R}^{d^t}$

$$\mathop{\mathbb{E}}_{X \sim N(0,l)} \left[\langle v, h_t(X) \rangle^2 \right] \leq \operatorname{poly}(k) \,.$$

• Large Signal: If $\|\mu\| \ge \Omega(t^{1/2})$ and $X \sim N(\mu, I)$, then w.h.p.

 $\langle h_t(X), \mu^{\otimes t} \rangle \geq (0.8 \, \|\mu\|)^{2t} \geq \operatorname{poly}(k) \; .$

				00000
Introduction	Barrier to Previous Approaches	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering

Properties of the Hermite Polynomial Tensor

• Bounded Variance: for all unit vectors $v \in \mathbb{R}^{d^t}$

$$\mathop{\mathbb{E}}_{X \sim N(0,l)} \left[\langle v, h_t(X) \rangle^2 \right] \leq \operatorname{poly}(k) \,.$$

• Large Signal: If $\|\mu\| \ge \Omega(t^{1/2})$ and $X \sim N(\mu, I)$, then w.h.p.

 $\langle h_t(X), \mu^{\otimes t} \rangle \geq (0.8 \, \|\mu\|)^{2t} \geq \operatorname{poly}(k)$.

Attempt: Try $f(X) = ||h_t(X)||$ i.e. check whether $||h_t(X)||$ is sufficiently large

0000000 000		000000000000000000000000000000000000000	000000000000	00000
0000000 000	to Previous Approaches			OOOOO

Properties of the Hermite Polynomial Tensor

• **Bounded Variance:** for all unit vectors $v \in \mathbb{R}^{d^t}$

$$\mathop{\mathbb{E}}_{X \sim N(0,l)} \left[\langle v, h_t(X) \rangle^2 \right] \leq \operatorname{poly}(k) \,.$$

• Large Signal: If $\|\mu\| \ge \Omega(t^{1/2})$ and $X \sim N(\mu, I)$, then w.h.p.

 $\langle h_t(X), \mu^{\otimes t} \rangle \geq (0.8 \, \|\mu\|)^{2t} \geq \operatorname{poly}(k)$.

Attempt: Try $f(X) = ||h_t(X)||$ i.e. check whether $||h_t(X)||$ is sufficiently large

Issue: we only know that the variance of $h_t(X)$ in each direction is bounded but it has d^t entries which is too many

Introduction 0000000 rrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computation

Full Clustering

Projecting onto the "Signal" Subspace

Projecting onto the "Signal" Subspace

Properties of the Hermite Polynomial Tensor

• Bounded Variance: for all unit vectors $v \in \mathbb{R}^{d^t}$

$$\mathop{\mathbb{E}}_{X \sim N(0,I)} \left[\langle v, h_t(X) \rangle^2 \right] \leq \operatorname{poly}(k) \,.$$

• Large Signal: If $\|\mu\| \ge \Omega(t^{1/2})$ and $X \sim N(\mu, I)$, then w.h.p.

 $\langle h_t(X), \mu^{\otimes t} \rangle \geq (0.8 \, \|\mu\|)^{2t} \geq \operatorname{poly}(k) \; .$

Projecting onto the "Signal" Subspace

Properties of the Hermite Polynomial Tensor

• **Bounded Variance:** for all unit vectors $v \in \mathbb{R}^{d^t}$

$$\mathop{\mathbb{E}}_{X \sim N(0,I)} \left[\langle v, h_t(X) \rangle^2 \right] \leq \operatorname{poly}(k) \,.$$

• Large Signal: If $\|\mu\| \ge \Omega(t^{1/2})$ and $X \sim N(\mu, I)$, then w.h.p.

 $\langle h_t(X), \mu^{\otimes t} \rangle \geq (0.8 \|\mu\|)^{2t} \geq \operatorname{poly}(k)$.

Main Idea: We instead let $f(X) = ||\Pi h_t(X)||$ where Π projects onto a low dimensional subspace that "captures the signal"

Projecting onto the "Signal" Subspace

Properties of the Hermite Polynomial Tensor

• **Bounded Variance:** for all unit vectors $v \in \mathbb{R}^{d^t}$

$$\mathop{\mathbb{E}}_{X \sim N(0,I)} \left[\langle v, h_t(X) \rangle^2 \right] \leq \operatorname{poly}(k) \,.$$

• Large Signal: If $\|\mu\| \ge \Omega(t^{1/2})$ and $X \sim N(\mu, I)$, then w.h.p.

 $\langle h_t(X), \mu^{\otimes t} \rangle \geq (0.8 \|\mu\|)^{2t} \geq \operatorname{poly}(k)$.

Main Idea: We instead let $f(X) = ||\Pi h_t(X)||$ where Π projects onto a low dimensional subspace that "captures the signal"

Want Π to project onto span $(\mu_1^{\otimes t}, \ldots, \mu_k^{\otimes t})$ - which is *k*-dimensional!

Introduction 0000000 arrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computation

Full Clustering

Designing the Test Functions

Introduction 0000000 Barrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computations

Full Clustering

Designing the Test Functions

Test Function: set $f(x) = \|\Pi_t h_t(X)\|$ where Π_t to projects onto span $(\mu_1^{\otimes t}, \dots, \mu_k^{\otimes t})$

Designing the Test Functions

Test Function: set $f(x) = \|\Pi_t h_t(X)\|$ where Π_t to projects onto span $(\mu_1^{\otimes t}, \dots, \mu_k^{\otimes t})$

Recall we need to verify the following properties

• f(X) is small with high probability if X is from the 0-component

If (X) is large with high probability if X is from a component with mean bounded away from 0

Designing the Test Functions

Test Function: set $f(x) = \|\Pi_t h_t(X)\|$ where Π_t to projects onto span $(\mu_1^{\otimes t}, \dots, \mu_k^{\otimes t})$

Recall we need to verify the following properties

• f(X) is small with high probability if X is from the 0-component

Lemma: 0-component

Let $X \sim N(0, I)$. Then $\|\Pi_t h_t(X)\| \leq k^{1/2} \cdot O(t)^{t/2}$ with high probability.

If (X) is large with high probability if X is from a component with mean bounded away from 0

Designing the Test Functions

Test Function: set $f(x) = \|\Pi_t h_t(X)\|$ where Π_t to projects onto span $(\mu_1^{\otimes t}, \dots, \mu_k^{\otimes t})$

Recall we need to verify the following properties

• f(X) is small with high probability if X is from the 0-component

Lemma: 0-component

Let $X \sim N(0, I)$. Then $\|\prod_t h_t(X)\| \leq k^{1/2} \cdot O(t)^{t/2}$ with high probability.

 f(X) is large with high probability if X is from a component with mean bounded away from 0

Lemma: Nonzero-component

Let $X \sim N(\mu_i, I)$, where $\|\mu_i\| \ge \Omega(t^{1/2})$. Then $\|\Pi_t h_t(X)\| \ge (0.8 \|\mu_i\|)^t$ with high probability.

	Barrier to Previous Approaches	Implicit Moment Estimation	Implici
0000000	000	0000000000000	0000

Verifying Soundness

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Verifyin	g Soundness			

First, for simplicity, assume we exactly know $\Pi_t = \operatorname{span}(\mu_1^{\otimes t}, \dots, \mu_k^{\otimes t})$

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Verifyir	ng Soundness			

First, for simplicity, assume we exactly know $\Pi_t = \operatorname{span}(\mu_1^{\otimes t}, \dots, \mu_k^{\otimes t})$

If
$$\Delta \ge \Omega\left(\log^{1/2+c} k\right)$$
, and $t = \Theta\left(\frac{\log k}{\log \log k}\right)$, then
$$\underbrace{k^{1/2} \cdot O(t)^{t/2}}_{\text{Zero Case}} \ll \underbrace{(0.8 \|\mu_i\|)^t}_{\text{Nonzero Case}}.$$

Introduction 0000000	Barrier to Previous Approaches	Implicit Moment Estimation	Implicit Moment Computations	Full Cluste 00000
	-			

Verifying Soundness

First, for simplicity, assume we exactly know $\Pi_t = \operatorname{span}(\mu_1^{\otimes t}, \dots, \mu_k^{\otimes t})$

If
$$\Delta \ge \Omega\left(\log^{1/2+c} k\right)$$
, and $t = \Theta\left(\frac{\log k}{\log \log k}\right)$, then
$$\underbrace{k^{1/2} \cdot O(t)^{t/2}}_{\text{Zero Case}} \ll \underbrace{(0.8 \|\mu_i\|)^t}_{\text{Nonzero Case}}.$$

This gives us a way to solve the distinguishing problem!

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full C

Verifying Soundness

First, for simplicity, assume we exactly know $\Pi_t = \operatorname{span}(\mu_1^{\otimes t}, \dots, \mu_k^{\otimes t})$

If
$$\Delta \ge \Omega\left(\log^{1/2+c} k\right)$$
, and $t = \Theta\left(\frac{\log k}{\log \log k}\right)$, then
$$\underbrace{k^{1/2} \cdot O(t)^{t/2}}_{\text{Zero Case}} \ll \underbrace{(0.8 \|\mu_i\|)^t}_{\text{Nonzero Case}}.$$

This gives us a way to solve the distinguishing problem!

Takeaway: if we know $\Pi_t = \text{span}(\mu_1^{\otimes t}, \dots, \mu_k^{\otimes t})$ then we can cluster with polynomially many samples

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
<u>о н</u>				

Outline

• The barrier to existing approaches

• Our techniques

- Implicit Moment Estimation
- Implicit Moment Computation
- Putting it all together

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000

Important Ingredients

- Stimating degree $t = \Theta(\log k / \log \log k)$ moments accurately
 - We show certain projections of the moment tensor have *polynomially bounded variance*
 - We can estimate these projections sample-efficiently

- Representing the degree t = Θ(log k/ log log k) moment tensor efficiently
 - We only need to perform a restricted set of operations on the moment tensor
 - These can be performed implicitly in polynomial time

Introduction 0000000 rrier to Previous Approaches

mplicit Moment Estimation

Implicit Moment Computations

Full Clustering

What Do We Need to Compute?

What Do We Need to Compute?

Computing the Projection: need to compute Π_t that projects onto the subspace span $(\mu_1^{\otimes t}, \ldots, \mu_k^{\otimes t})$

Barrier to Previous Approaches Introduction Implicit Moment Estimation Implicit Moment Computations Full Clustering

What Do We Need to Compute?

Computing the Projection: need to compute Π_t that projects onto the subspace span($\mu_1^{\otimes t}, \ldots, \mu_k^{\otimes t}$)

Evaluating the Projection: need to compute $\prod_t h_t(X)$ i.e. apply the projection to a Hermite polynomial tensor

 Introduction
 Barrier to Previous Approaches
 Implicit Moment Estimation
 Implicit Moment Computations
 Full Clustering

 What Do We Need to Compute?
 State
 State
 State
 State
 State

Computing the Projection: need to compute Π_t that projects onto the subspace span $(\mu_1^{\otimes t}, \ldots, \mu_{\nu}^{\otimes t})$

Evaluating the Projection: need to compute $\Pi_t h_t(X)$ i.e. apply the projection to a Hermite polynomial tensor

Preview

What Do We Need to Compute?

Computing the Projection: need to compute Π_t that projects onto the subspace span($\mu_1^{\otimes t}, \ldots, \mu_k^{\otimes t}$)

Evaluating the Projection: need to compute $\prod_t h_t(X)$ i.e. apply the projection to a Hermite polynomial tensor

Preview

• Main idea: we construct such a representation inductively (in t)

What Do We Need to Compute?

Computing the Projection: need to compute Π_t that projects onto the subspace span($\mu_1^{\otimes t}, \ldots, \mu_k^{\otimes t}$)

Evaluating the Projection: need to compute $\prod_t h_t(X)$ i.e. apply the projection to a Hermite polynomial tensor

Preview

- Main idea: we construct such a representation inductively (in t)
- $\Pi_t : \mathbb{R}^{d^t} \to \mathbb{R}^k$ is too large to write down we will compute an implicit representation of Π_t that has polynomial size and allows us to perform certain restricted operations in polynomial time

ntroduction	Barrier to F	Approaches	Implic
000000	000		000

mplicit Moment Estimation

Implicit Moment Computations

Full Clustering

Iterative projection maps

Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations 00000000 000 000000000000 00000000000	Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations
---	-------------------------	---------------------------------------	----------------------------	------------------------------

Iterative projection maps

Inductive Step: Let
$$\Pi_{s-1} = \operatorname{span}\left(\mu_1^{\otimes(s-1)}, \ldots, \mu_k^{\otimes(s-1)}
ight)$$

• Assume we have some implicit representation of Π_{s-1}

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations

Full Clustering

Iterative projection maps

Inductive Step: Let
$$\Pi_{s-1} = \operatorname{span}\left(\mu_1^{\otimes(s-1)}, \ldots, \mu_k^{\otimes(s-1)}
ight)$$

• Assume we have some implicit representation of Π_{s-1}

Goal: Construct a representation of
$$\Pi_s = \operatorname{span}\left(\mu_1^{\otimes s}, \ldots, \mu_k^{\otimes s}\right)$$

Introduction 0000000 rrier to Previous Approaches

mplicit Moment Estimation

Implicit Moment Computations

Full Clustering

Constructing the Projection (cont.)

troduction Barrier

er to Previous Approaches

mplicit Moment Estimation

Implicit Moment Computations

Full Clustering

Constructing the Projection (cont.)

Given samples $X_1, \ldots, X_n \sim \mathcal{M}$, estimate

$$\frac{1}{n}\sum_{i=1}^n h_{2s}(X_i) \approx \mathop{\mathbb{E}}_{X \sim \mathcal{M}}[h_{2s}(X)] = \sum_{i=1}^k w_i \mu_i^{\otimes 2s}.$$

Introduction Barrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computations

Full Clustering

Constructing the Projection (cont.)

Given samples $X_1, \ldots, X_n \sim \mathcal{M}$, estimate

$$\frac{1}{n}\sum_{i=1}^n h_{2s}(X_i) \approx \mathop{\mathbb{E}}_{X \sim \mathcal{M}}[h_{2s}(X)] = \sum_{i=1}^k w_i \mu_i^{\otimes 2s}$$

If we treat this as a $d^s imes d^s$ matrix, we can write this as

$$T_{2s} = \sum_{i=1}^{k} w_i \left(\mu_i^{\otimes s}
ight) \left(\mu_i^{\otimes s}
ight)^{ op} \; .$$

Barrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computations

Full Clustering

Constructing the Projection (cont.)

Given samples $X_1, \ldots, X_n \sim \mathcal{M}$, estimate

$$\frac{1}{n}\sum_{i=1}^n h_{2s}(X_i) \approx \mathop{\mathbb{E}}_{X \sim \mathcal{M}}[h_{2s}(X)] = \sum_{i=1}^k w_i \mu_i^{\otimes 2s}.$$

If we treat this as a $d^s imes d^s$ matrix, we can write this as

$$T_{2s} = \sum_{i=1}^{k} w_i \left(\mu_i^{\otimes s} \right) \left(\mu_i^{\otimes s} \right)^\top .$$

This is a rank-k matrix whose nontrivial eigenvectors are exactly the span of $\{\mu_i^{\otimes s}\}$.

Barrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computations

Full Clustering

Constructing the Projection (cont.)

Given samples $X_1, \ldots, X_n \sim \mathcal{M}$, estimate

$$\frac{1}{n}\sum_{i=1}^n h_{2s}(X_i) \approx \mathop{\mathbb{E}}_{X \sim \mathcal{M}}[h_{2s}(X)] = \sum_{i=1}^k w_i \mu_i^{\otimes 2s}.$$

If we treat this as a $d^s imes d^s$ matrix, we can write this as

$$T_{2s} = \sum_{i=1}^{k} w_i \left(\mu_i^{\otimes s} \right) \left(\mu_i^{\otimes s} \right)^\top .$$

This is a rank-k matrix whose nontrivial eigenvectors are exactly the span of $\{\mu_i^{\otimes s}\}$.

This matrix is too large to work with, but we can make use of the inductive step
rrier to Previous Approaches

mplicit Moment Estimation

Implicit Moment Computations

Full Clustering

Constructing the Projection (cont.)

rrier to Previous Approaches

mplicit Moment Estimation

Implicit Moment Computations

Full Clustering

Constructing the Projection (cont.)

Define the projection matrix

$$B_s = I_{d imes d} \otimes \Pi_{s-1} : \mathbb{R}^{d^s} o \mathbb{R}^{dk}$$
 .

rrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computations

Full Clustering

Constructing the Projection (cont.)

Define the projection matrix

$$B_s = I_{d imes d} \otimes \Pi_{s-1} : \mathbb{R}^{d^s} o \mathbb{R}^{dk}$$
 .

We can instead estimate $A_s \in \mathbb{R}^{dk imes dk}$ given by

$$A_{s} = \frac{1}{n} \sum_{i=1}^{n} B_{s} h_{2s}(X_{i}) B_{s}^{\top} \approx \sum_{i=1}^{k} w_{i} \left(B_{s} \mu_{i}^{\otimes s} \right) \left(B_{s} \mu_{i}^{\otimes s} \right)^{\top}$$

Constructing the Projection (cont.)

Define the projection matrix

$$B_s = I_{d imes d} \otimes \Pi_{s-1} : \mathbb{R}^{d^s} o \mathbb{R}^{dk}$$
.

We can instead estimate $A_s \in \mathbb{R}^{dk imes dk}$ given by

$$A_{s} = \frac{1}{n} \sum_{i=1}^{n} B_{s} h_{2s}(X_{i}) B_{s}^{\top} \approx \sum_{i=1}^{k} w_{i} \left(B_{s} \mu_{i}^{\otimes s} \right) \left(B_{s} \mu_{i}^{\otimes s} \right)^{\top}$$

Now we let $\Gamma_s : \mathbb{R}^{dk} \to \mathbb{R}^k$ denote the projection onto the top k eigenvectors of A_s

• This approximates the span of $\{B_s \mu_i^{\otimes s}\}$

Constructing the Projection (cont.)

Define the projection matrix

$$B_s = I_{d imes d} \otimes \Pi_{s-1} : \mathbb{R}^{d^s} o \mathbb{R}^{dk}$$
 .

We can instead estimate $A_s \in \mathbb{R}^{dk imes dk}$ given by

$$A_{s} = \frac{1}{n} \sum_{i=1}^{n} B_{s} h_{2s}(X_{i}) B_{s}^{\top} \approx \sum_{i=1}^{k} w_{i} \left(B_{s} \mu_{i}^{\otimes s} \right) \left(B_{s} \mu_{i}^{\otimes s} \right)^{\top}$$

Now we let $\Gamma_s : \mathbb{R}^{dk} \to \mathbb{R}^k$ denote the projection onto the top k eigenvectors of A_s

• This approximates the span of $\{B_s \mu_i^{\otimes s}\}$

We set $\Pi_s = \Gamma_s B_s$

Introduction Barrier to Previous Approaches Implie

mplicit Moment Estimation

Implicit Moment Computations

Full Clustering

Analysis without Noise

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
A	- tili - i Nista	_		

Define the matrix

$$B_s = I_{d imes d} \otimes \prod_{s=1} : \mathbb{R}^{d^s} o \mathbb{R}^{dk}$$

and assume $\Pi_{s-1} = \text{span}\left(\mu_1^{\otimes (s-1)}, \ldots, \mu_k^{\otimes (s-1)}\right)$

Introduction 0000000	Barrier to Previous Approaches	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Analysi	a without Naio	<u>_</u>		

Define the matrix

$$B_s = I_{d imes d} \otimes \prod_{s=1} : \mathbb{R}^{d^s} o \mathbb{R}^{dk}$$

and assume $\Pi_{s-1} = \operatorname{span}\left(\mu_1^{\otimes(s-1)},\ldots,\mu_k^{\otimes(s-1)}\right)$

Let $\Gamma_s : \mathbb{R}^{dk} \to \mathbb{R}^k$ denote the projection onto the span of $\{B_s \mu_i^{\otimes s}\}$.

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
Analusi	aishas Mata			

Define the matrix

$$B_s = I_{d imes d} \otimes \prod_{s=1} : \mathbb{R}^{d^s} o \mathbb{R}^{dk}$$

and assume $\Pi_{s-1} = \operatorname{span}\left(\mu_1^{\otimes(s-1)},\ldots,\mu_k^{\otimes(s-1)}\right)$

Let $\Gamma_s : \mathbb{R}^{dk} \to \mathbb{R}^k$ denote the projection onto the span of $\{B_s \mu_i^{\otimes s}\}$.

Claim: span $(\mu_1^{\otimes s}, \ldots, \mu_k^{\otimes s}) = \Gamma_s B_s.$

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
A	tili i Nister			

Define the matrix

$$B_s = I_{d imes d} \otimes \Pi_{s-1} : \mathbb{R}^{d^s} o \mathbb{R}^{dk}$$

and assume $\Pi_{s-1} = \operatorname{span}\left(\mu_1^{\otimes(s-1)},\ldots,\mu_k^{\otimes(s-1)}\right)$

Let $\Gamma_s : \mathbb{R}^{dk} \to \mathbb{R}^k$ denote the projection onto the span of $\{B_s \mu_i^{\otimes s}\}$.

Claim: span $(\mu_1^{\otimes s}, \ldots, \mu_k^{\otimes s}) = \Gamma_s B_s$. **Proof:** It suffices to check that $\Gamma_s B_s$ preserves the norm of all $\mu_i^{\otimes s}$.

$$\begin{aligned} \left\| \Gamma_{s} B_{s} \mu_{i}^{\otimes s} \right\| &= \left\| B_{s} \mu_{i}^{\otimes s} \right\| \\ &= \left\| \mu_{i} \otimes \Pi_{s-1} \mu_{i}^{\otimes (s-1)} \right\| \\ &= \left\| \mu_{i} \right\| \left\| \Pi_{s-1} \mu_{i}^{\otimes (s-1)} \right\| = \left\| \mu_{i} \right\|^{s} \end{aligned}$$

rrier to Previous Approaches

mplicit Moment Estimation

Implicit Moment Computations

Full Clustering

Summary of the Full Construction

Summary of the Full Construction

Given an efficient representation of Π_{s-1} , and samples $X_1, \ldots, X_n \sim \mathcal{M}$:

Summary of the Full Construction

Given an efficient representation of Π_{s-1} , and samples $X_1, \ldots, X_n \sim \mathcal{M}$:

• Let
$$B_s = I_{d \times d} \otimes \prod_{s=1}^{d}$$
.

Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

Summary of the Full Construction

Given an efficient representation of Π_{s-1} , and samples $X_1, \ldots, X_n \sim \mathcal{M}$:

• Let
$$B_s = I_{d \times d} \otimes \prod_{s=1}^{d}$$
.

② Using samples, estimate the matrix $A_s \in \mathbb{R}^{dk \times dk}$

$$A_{s} = \frac{1}{n} \sum_{i=1}^{n} B_{s} h_{2s}(X_{i}) B_{s}^{\top} \approx \sum_{i=1}^{k} w_{i} \left(B_{s} \mu_{i}^{\otimes s} \right) \left(B_{s} \mu_{i}^{\otimes s} \right)^{\top}$$

Full Clustering 00000

Summary of the Full Construction

Given an efficient representation of Π_{s-1} , and samples $X_1, \ldots, X_n \sim \mathcal{M}$:

• Let
$$B_s = I_{d \times d} \otimes \prod_{s=1}$$
.

② Using samples, estimate the matrix $A_s \in \mathbb{R}^{dk \times dk}$

$$A_{s} = \frac{1}{n} \sum_{i=1}^{n} B_{s} h_{2s}(X_{i}) B_{s}^{\top} \approx \sum_{i=1}^{k} w_{i} \left(B_{s} \mu_{i}^{\otimes s} \right) \left(B_{s} \mu_{i}^{\otimes s} \right)^{\top}$$

• Let $\Gamma_s : \mathbb{R}^{dk} \to \mathbb{R}^k$ project onto the top k eigenvectors of A_s .

Summary of the Full Construction

Given an efficient representation of Π_{s-1} , and samples $X_1, \ldots, X_n \sim \mathcal{M}$:

Full Clustering

• Let
$$B_s = I_{d \times d} \otimes \prod_{s=1}^{d}$$
.

② Using samples, estimate the matrix $A_s \in \mathbb{R}^{dk \times dk}$

$$A_{s} = \frac{1}{n} \sum_{i=1}^{n} B_{s} h_{2s}(X_{i}) B_{s}^{\top} \approx \sum_{i=1}^{k} w_{i} \left(B_{s} \mu_{i}^{\otimes s} \right) \left(B_{s} \mu_{i}^{\otimes s} \right)^{\top}$$

Solution Let $\Gamma_s : \mathbb{R}^{dk} \to \mathbb{R}^k$ project onto the top k eigenvectors of A_s .

• Output $\Pi_s = \Gamma_s B_s$.

rrier to Previous Approaches

mplicit Moment Estimation

Implicit Moment Computations

Full Clustering

Evaluations with the Implicit Projection

Barrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computations

Full Clustering

Evaluations with the Implicit Projection

We constructed $\Gamma_s : \mathbb{R}^{dk} \to \mathbb{R}^k$ so that

 $\Pi_s = \Gamma_s \left(I_{d \times d} \otimes \Pi_{s-1} \right) \; .$

Barrier to Previous Approaches

Implicit Moment Estimation

Implicit Moment Computations

Full Clustering

Evaluations with the Implicit Projection

We constructed $\Gamma_s : \mathbb{R}^{dk} \to \mathbb{R}^k$ so that

$$\Pi_s = \Gamma_s \left(I_{d \times d} \otimes \Pi_{s-1} \right) \; .$$

Unraveling the recursion, this yields a series of projection matrices $\Gamma_1, \ldots, \Gamma_s : \mathbb{R}^{dk} \to \mathbb{R}^k$ so that

$$\Pi_{s} = \Gamma_{s} \left(I_{d \times d} \otimes \Gamma_{s-1} \left(I_{d \times d} \otimes \ldots \right) \right) \,.$$

This is a polynomial-sized implicit representation!

Full Clustering

Evaluations with the Implicit Projection

We constructed $\Gamma_s : \mathbb{R}^{dk} \to \mathbb{R}^k$ so that

$$\Pi_s = \Gamma_s \left(I_{d \times d} \otimes \Pi_{s-1} \right) \; .$$

Unraveling the recursion, this yields a series of projection matrices $\Gamma_1, \ldots, \Gamma_s : \mathbb{R}^{dk} \to \mathbb{R}^k$ so that

$$\Pi_s = \Gamma_s \left(I_{d \times d} \otimes \Gamma_{s-1} \left(I_{d \times d} \otimes \ldots \right) \right) \,.$$

This is a polynomial-sized implicit representation!

Key Fact: $\Pi_s v$ can be computed efficiently on rank-1 tensors i.e. of the form $v = v_1 \otimes \cdots \otimes v_s$ because

$$\Pi_s(v_1\otimes\cdots\otimes v_s)=\Gamma_s(v_1\otimes\Pi_{s-1}(v_2\otimes\cdots\otimes v_s))$$

Full Clustering

Evaluations with the Implicit Projection

We constructed $\Gamma_s : \mathbb{R}^{dk} \to \mathbb{R}^k$ so that

$$\Pi_s = \Gamma_s \left(I_{d \times d} \otimes \Pi_{s-1} \right) \; .$$

Unraveling the recursion, this yields a series of projection matrices $\Gamma_1, \ldots, \Gamma_s : \mathbb{R}^{dk} \to \mathbb{R}^k$ so that

$$\Pi_s = \Gamma_s \left(I_{d \times d} \otimes \Gamma_{s-1} \left(I_{d \times d} \otimes \ldots \right) \right) \,.$$

This is a polynomial-sized implicit representation!

Key Fact: $\Pi_s v$ can be computed efficiently on rank-1 tensors i.e. of the form $v = v_1 \otimes \cdots \otimes v_s$ because

$$\Pi_s(v_1\otimes\cdots\otimes v_s)=\Gamma_s(v_1\otimes\Pi_{s-1}(v_2\otimes\cdots\otimes v_s))$$

We can (only) efficiently apply the projection to rank-1 tensors

Implicit Moment Estimation

Implicit Moment Computations

Full Clustering

What Do We Need to Compute?

Computing the Projection: need to compute Π_t that projects onto the subspace span $(\mu_1^{\otimes t}, \ldots, \mu_k^{\otimes t})$

Evaluating the Projection: need to compute $\Pi_t h_t(X)$ i.e. apply the projection to a Hermite polynomial tensor

What Do We Need to Compute?

Computing the Projection: need to compute Π_t that projects onto the subspace span $(\mu_1^{\otimes t}, \ldots, \mu_k^{\otimes t})$

Evaluating the Projection: need to compute $\Pi_t h_t(X)$ i.e. apply the projection to a Hermite polynomial tensor

Want to show: To evaluate $\Pi_t h_t(X)$, we need to represent $h_t(x)$ as a low-rank tensor!

rrier to Previous Approaches

mplicit Moment Estimation

Implicit Moment Computations

Full Clustering

Low rank approximations of Hermite polynomials

Low rank approximations of Hermite polynomials

Unfortunately $h_t(X)$ does not appear to be a low-rank tensor - it contains terms of the form $I_{d \times d} \otimes \cdots \otimes I_{d \times d}$

Low rank approximations of Hermite polynomials

Unfortunately $h_t(X)$ does not appear to be a low-rank tensor - it contains terms of the form $I_{d \times d} \otimes \cdots \otimes I_{d \times d}$

However, we can introduce additional variables $z_1, \ldots, z_t \sim N(0, I)$ and a polynomial R_t such that

$$\mathbb{E}_{z_1,\ldots,z_t\sim N(0,I)}[R_t(X,z_1,\ldots,z_t)]=h_t(X)$$

Low rank approximations of Hermite polynomials

Unfortunately $h_t(X)$ does not appear to be a low-rank tensor - it contains terms of the form $I_{d \times d} \otimes \cdots \otimes I_{d \times d}$

However, we can introduce additional variables $z_1, \ldots, z_t \sim N(0, I)$ and a polynomial R_t such that

$$\mathbb{E}_{z_1,\ldots,z_t \sim N(0,I)}[R_t(X,z_1,\ldots,z_t)] = h_t(X)$$

We view $R_t(X)$ as a polynomial with random coefficients

Low rank approximations of Hermite polynomials (cont.)

Lemma

For all t, there is a (random) polynomial $R_t : \mathbb{R}^d \to \mathbb{R}^{d^t}$ satisfying:

• Unbiased: For all $X \in \mathbb{R}^d$, we have

$$\mathop{\mathbb{E}}_{R_t}[R_t(X)] = h_t(X) \; .$$

• Bounded Variance: For all $v \in \mathbb{R}^{d^t}$ with ||v|| = 1, we have

$$\mathop{\mathbb{E}}_{X \sim \mathsf{N}(\mu, l), \mathsf{R}_t} \left[\langle \mathsf{v}, \mathsf{R}_t(X) \rangle^2 \right] \leq O(t)^t \cdot \left(\|\mu\|^{2t} + 1 \right)$$

• Low Rank: R_t can always be written as a sum of poly(k) many (explicit) rank-1 tensors.

Low rank approximations of Hermite polynomials (cont.)

Lemma

For all t, there is a (random) polynomial $R_t : \mathbb{R}^d \to \mathbb{R}^{d^t}$ satisfying:

• Unbiased: For all $X \in \mathbb{R}^d$, we have

$$\mathop{\mathbb{E}}_{R_t}[R_t(X)] = h_t(X) \; .$$

• Bounded Variance: For all $v \in \mathbb{R}^{d^t}$ with ||v|| = 1, we have

$$\mathop{\mathbb{E}}_{X \sim \mathsf{N}(\mu, l), \mathsf{R}_t} \left[\langle \mathsf{v}, \mathsf{R}_t(X) \rangle^2 \right] \leq O(t)^t \cdot \left(\|\mu\|^{2t} + 1 \right)$$

• Low Rank: R_t can always be written as a sum of poly(k) many (explicit) rank-1 tensors.

Proof: See paper...

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering ●0000
A				

Outline

- The barrier to existing approaches
- Our techniques
 - Implicit Moment Estimation
 - Implicit Moment Computation
- Putting it all together

Atroduction Barrier to Previous Ap

Implicit Moment Estimatio

Implicit Moment Computatio

Full Clustering

The full algorithm (sort of)

Introduction 0000000	Barrier to F 000	Previous Appr	oaches	Implicit Moment	Implicit Moment Estimation	Implicit Moment Computations	lomputations 00	Full Clustering 0●000	
-			1	C)					

The full algorithm (sort of)

Given samples $X_1, \ldots, X_n \sim \mathcal{M}$, and another sample $X' \sim \mathcal{M}$:

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 0●000
The full	algorithm (sor	t of)		

Given samples $X_1,\ldots,X_n\sim \mathcal{M},$ and another sample $X'\sim \mathcal{M}:$

• Let $t = \Theta(\log k / \log \log k)$.

Given samples $X_1, \ldots, X_n \sim \mathcal{M}$, and another sample $X' \sim \mathcal{M}$:

• Let $t = \Theta(\log k / \log \log k)$.

Compute Implicit Projection: Using X₁,..., X_n, apply the previous subroutine to find a representation of Π_t as a sequence of projection matrices Γ₁,..., Γ_t.

Given samples $X_1, \ldots, X_n \sim \mathcal{M}$, and another sample $X' \sim \mathcal{M}$:

• Let $t = \Theta(\log k / \log \log k)$.

- Compute Implicit Projection: Using X₁,..., X_n, apply the previous subroutine to find a representation of Π_t as a sequence of projection matrices Γ₁,..., Γ_t.
- **Test Sample:** Compute $\alpha = \|\Pi_t R_t(X')\| \approx \|\Pi_t h_t(X')\|$ (computed efficiently using low-rank representation of R_t)

Given samples $X_1, \ldots, X_n \sim \mathcal{M}$, and another sample $X' \sim \mathcal{M}$:

• Let $t = \Theta(\log k / \log \log k)$.

- Compute Implicit Projection: Using X₁,..., X_n, apply the previous subroutine to find a representation of Π_t as a sequence of projection matrices Γ₁,..., Γ_t.
- **Test Sample:** Compute $\alpha = \|\Pi_t R_t(X')\| \approx \|\Pi_t h_t(X')\|$ (computed efficiently using low-rank representation of R_t)
- If α < k^{1/2}O(t)^{t/2}, say that X' belongs to the 0 mean cluster, otherwise, say it belongs to a non-zero mean cluster.
Introduction 0000000 rier to Previous Approaches

mplicit Moment Estimation

Implicit Moment Computation

Full Clustering

Generalizing to Poincaré

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00€00
Cenera	lizing to Poince	nró		

A distribution is σ -Poincaré if

$$\mathsf{Var}[f(X)] \leq \sigma^2 \, \mathbb{E}\left[\|
abla f(X) \|^2
ight] \; .$$

Well studied class of distributions, including Gaussians, product distributions, and log-concave distributions (thanks to KLS).

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00●00
Genera	lizing to Poinca	nré		

A distribution is σ -Poincaré if

$$\operatorname{Var}[f(X)] \leq \sigma^2 \operatorname{\mathbb{E}}\left[\|
abla f(X) \|^2
ight] \; .$$

Well studied class of distributions, including Gaussians, product distributions, and log-concave distributions (thanks to KLS).

Our techniques generalize almost directly to Poincaré distributions, by using *adjusted* polynomials in place of Hermite polynomials.

Introduction 0000000	Barrier to Previous Approaches	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering
Genera	lizing to Poince	nré		

A distribution is σ -Poincaré if

$$\operatorname{Var}[f(X)] \leq \sigma^2 \operatorname{\mathbb{E}}\left[\|
abla f(X) \|^2
ight] \; .$$

Well studied class of distributions, including Gaussians, product distributions, and log-concave distributions (thanks to KLS).

Our techniques generalize almost directly to Poincaré distributions, by using *adjusted* polynomials in place of Hermite polynomials.

Here, we require separation $\Delta = \Theta(\log^{1+c} k)$, but this is information-theoretically necessary, since Poincaré distributions could have worse concentration.

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 000●0
In Full	Generality			

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
In Full	Generality			

The procedure we discussed will distinguish between the zero-mean cluster and other clusters only if all the nonzero means have comparable norm.

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering
In Full	Generality			

The procedure we discussed will distinguish between the zero-mean cluster and other clusters only if all the nonzero means have comparable norm.

If the means have drastically different norms, the signals from the smaller means will get "washed out"

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 00000
In Full	Generality			

The procedure we discussed will distinguish between the zero-mean cluster and other clusters only if all the nonzero means have comparable norm.

If the means have drastically different norms, the signals from the smaller means will get "washed out"

To circumvent this and obtain a perfect clustering, we exploit the structure of Gaussians to recursively cluster

• It is not clear how to do this recursion for general Poincaré distributions.

Introduction 0000000	Barrier to Previous Approaches	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering
Summa	nry			

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 0000●
Summa	ry			

We give an algorithm for clustering mixtures of isotropic Gaussians with nearly optimal separation $% \left({{{\left({{{{\bf{n}}_{{\rm{s}}}}} \right)}_{{\rm{s}}}}} \right)$

0000000	000	000000000000	00000000000	00000		
Summary						

- Overcomes barriers to previous approaches requiring quasi-polynomial time
- Techniques for accessing moment information at degree
 t = Θ(log k / log log k) in polynomial time

0000000	OOO	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 0000●
Summa	irv			

- Overcomes barriers to previous approaches requiring quasi-polynomial time
- Techniques for accessing moment information at degree $t = \Theta(\log k / \log \log k)$ in polynomial time

More general GMMs/other mixture models?

Introduction 0000000	Barrier to Previous Approaches	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering
Summa	arv			

- Overcomes barriers to previous approaches requiring quasi-polynomial time
- Techniques for accessing moment information at degree $t = \Theta(\log k / \log \log k)$ in polynomial time

More general GMMs/other mixture models?

Other applications of the implicit moment estimation technique?

Introduction 0000000	Barrier to Previous Approaches 000	Implicit Moment Estimation	Implicit Moment Computations	Full Clustering 0000●
Summary				

- Overcomes barriers to previous approaches requiring quasi-polynomial time
- Techniques for accessing moment information at degree $t = \Theta(\log k / \log \log k)$ in polynomial time

More general GMMs/other mixture models?

Other applications of the implicit moment estimation technique?

Thanks!