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(Gaussian) Mixture Models

Mixture Models

Given a class of distributions D, a mixture of k elements from D is a
distribution of the form

M =
k∑

i=1

wiDi ,

where D1, . . . ,Dk ∈ D, and wi satisfy wi ≥ 0 and
∑k

i=1 wi = 1.

Gaussian Mixture Models (GMMs): D = {N(µ,Σ)}.

When Σ = I , these are known as isotropic GMMs

Mixture models and GMMs are well-studied theoretically, and popular in
practice as a way to model heterogeneous data.
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Separation Conditions

For isotropic GMMs, we need component means to be separated

Let M =
∑k

i=1 wiN(µi , I ) be a mixture of k isotropic Gaussians, and
define

∆ = min
i ̸=j

∥µi − µj∥2 .

Main Question

What is the minimum ∆ you need to efficiently cluster?



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

Separation Conditions

For isotropic GMMs, we need component means to be separated

Let M =
∑k

i=1 wiN(µi , I ) be a mixture of k isotropic Gaussians, and
define

∆ = min
i ̸=j

∥µi − µj∥2 .

Main Question

What is the minimum ∆ you need to efficiently cluster?



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

Separation Conditions

For isotropic GMMs, we need component means to be separated

Let M =
∑k

i=1 wiN(µi , I ) be a mixture of k isotropic Gaussians, and
define

∆ = min
i ̸=j

∥µi − µj∥2 .

Main Question

What is the minimum ∆ you need to efficiently cluster?



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

Separation Conditions

For isotropic GMMs, we need component means to be separated

Let M =
∑k

i=1 wiN(µi , I ) be a mixture of k isotropic Gaussians, and
define

∆ = min
i ̸=j

∥µi − µj∥2 .

Main Question

What is the minimum ∆ you need to efficiently cluster?



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

The information theoretic limit

For simplicity, assume that mixing weights are uniform i.e. wi = 1/k for
all i = 1, . . . , k.

The results do not qualitatively change for general mixing weights.

Fact [Regev, Vijayaraghavan 2017]

∆ = Θ(
√
log k) is both necessary and sufficient to obtain a clustering

that is 99% accurate with high probability.
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What about computationally efficient methods?

Clustering is easy in 1-dimension.

In high dimensions, we can brute-force search in exp(d) time (where d is
the dimensionality of the data). What can we achieve with efficient
methods?

[Dasgupta, 1999]: ∆ = Ω(d1/2) in time poly(d , k).
[Vempala, Wang 2004]: ∆ = Ω(min(d1/4, k1/4)) in time poly(d , k).

[Diakonikolas, Kane, Stewart 2018], [Kothari, Steinhardt, Steurer
2018], [Hopkins, Li 2018]

All get ∆ = Ω(kϵ) in time poly(d , kpoly(1/ϵ))

Question

Can we cluster in polynomial time down to the information theoretic
limit?



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

What about computationally efficient methods?

Clustering is easy in 1-dimension.

In high dimensions, we can brute-force search in exp(d) time (where d is
the dimensionality of the data). What can we achieve with efficient
methods?

[Dasgupta, 1999]: ∆ = Ω(d1/2) in time poly(d , k).
[Vempala, Wang 2004]: ∆ = Ω(min(d1/4, k1/4)) in time poly(d , k).

[Diakonikolas, Kane, Stewart 2018], [Kothari, Steinhardt, Steurer
2018], [Hopkins, Li 2018]

All get ∆ = Ω(kϵ) in time poly(d , kpoly(1/ϵ))

Question

Can we cluster in polynomial time down to the information theoretic
limit?



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

What about computationally efficient methods?

Clustering is easy in 1-dimension.

In high dimensions, we can brute-force search in exp(d) time (where d is
the dimensionality of the data). What can we achieve with efficient
methods?

[Dasgupta, 1999]: ∆ = Ω(d1/2) in time poly(d , k).
[Vempala, Wang 2004]: ∆ = Ω(min(d1/4, k1/4)) in time poly(d , k).

[Diakonikolas, Kane, Stewart 2018], [Kothari, Steinhardt, Steurer
2018], [Hopkins, Li 2018]

All get ∆ = Ω(kϵ) in time poly(d , kpoly(1/ϵ))

Question

Can we cluster in polynomial time down to the information theoretic
limit?



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

What about computationally efficient methods?

Clustering is easy in 1-dimension.

In high dimensions, we can brute-force search in exp(d) time (where d is
the dimensionality of the data). What can we achieve with efficient
methods?

[Dasgupta, 1999]: ∆ = Ω(d1/2) in time poly(d , k).

[Vempala, Wang 2004]: ∆ = Ω(min(d1/4, k1/4)) in time poly(d , k).

[Diakonikolas, Kane, Stewart 2018], [Kothari, Steinhardt, Steurer
2018], [Hopkins, Li 2018]

All get ∆ = Ω(kϵ) in time poly(d , kpoly(1/ϵ))

Question

Can we cluster in polynomial time down to the information theoretic
limit?



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

What about computationally efficient methods?

Clustering is easy in 1-dimension.

In high dimensions, we can brute-force search in exp(d) time (where d is
the dimensionality of the data). What can we achieve with efficient
methods?

[Dasgupta, 1999]: ∆ = Ω(d1/2) in time poly(d , k).
[Vempala, Wang 2004]: ∆ = Ω(min(d1/4, k1/4)) in time poly(d , k).

[Diakonikolas, Kane, Stewart 2018], [Kothari, Steinhardt, Steurer
2018], [Hopkins, Li 2018]

All get ∆ = Ω(kϵ) in time poly(d , kpoly(1/ϵ))

Question

Can we cluster in polynomial time down to the information theoretic
limit?



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

What about computationally efficient methods?

Clustering is easy in 1-dimension.

In high dimensions, we can brute-force search in exp(d) time (where d is
the dimensionality of the data). What can we achieve with efficient
methods?

[Dasgupta, 1999]: ∆ = Ω(d1/2) in time poly(d , k).
[Vempala, Wang 2004]: ∆ = Ω(min(d1/4, k1/4)) in time poly(d , k).

[Diakonikolas, Kane, Stewart 2018], [Kothari, Steinhardt, Steurer
2018], [Hopkins, Li 2018]

All get ∆ = Ω(kϵ) in time poly(d , kpoly(1/ϵ))

Question

Can we cluster in polynomial time down to the information theoretic
limit?



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

What about computationally efficient methods?

Clustering is easy in 1-dimension.

In high dimensions, we can brute-force search in exp(d) time (where d is
the dimensionality of the data). What can we achieve with efficient
methods?

[Dasgupta, 1999]: ∆ = Ω(d1/2) in time poly(d , k).
[Vempala, Wang 2004]: ∆ = Ω(min(d1/4, k1/4)) in time poly(d , k).

[Diakonikolas, Kane, Stewart 2018], [Kothari, Steinhardt, Steurer
2018], [Hopkins, Li 2018]

All get ∆ = Ω(kϵ) in time poly(d , kpoly(1/ϵ))

Question

Can we cluster in polynomial time down to the information theoretic
limit?



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

Main Result

Theorem

Let c > 0, and let M be a (uniform) mixture of isotropic Gaussians with

separation ∆ = Ω(log1/2+c k). Then, there is an algorithm which takes
n = poly(k, d) samples from M and runs in time poly(k, d), and which
recovers a perfect clustering of the samples with high probability.

Our algorithm also works for non-uniform mixtures.

We can also handle mixtures of shifts of any distribution D
satisfying the Poincaré inequality under a mild additional condition
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satisfying the Poincaré inequality under a mild additional condition



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

Main Result

Theorem

Let c > 0, and let M be a (uniform) mixture of isotropic Gaussians with

separation ∆ = Ω(log1/2+c k). Then, there is an algorithm which takes
n = poly(k, d) samples from M and runs in time poly(k, d), and which
recovers a perfect clustering of the samples with high probability.

Our algorithm also works for non-uniform mixtures.

We can also handle mixtures of shifts of any distribution D
satisfying the Poincaré inequality under a mild additional condition



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

Main Result

Theorem

Let c > 0, and let M be a (uniform) mixture of isotropic Gaussians with

separation ∆ = Ω(log1/2+c k). Then, there is an algorithm which takes
n = poly(k, d) samples from M and runs in time poly(k, d), and which
recovers a perfect clustering of the samples with high probability.

Our algorithm also works for non-uniform mixtures.

We can also handle mixtures of shifts of any distribution D
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Outline

The barrier to existing approaches

Our techniques

Implicit Moment Estimation
Implicit Moment Computation

Putting it all together



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

Method of Moments

At a high-level:

1 Measure moments of the mixture M i.e. EX∼M[X⊗t ]

2 If moments are distorted compared to those of a standard Gaussian
then we can cluster

3 If separation between means is Ω(kϵ) then we need to measure
moments of degree 1/ϵ to detect distortions
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The barrier to reaching polylogarithmic separation

Barrier: Clustering with separation Ω(kϵ) requires degree 1/ϵ moments

To get separation poly(log k), this corresponds to taking degree
t = Θ(log k/ log log k) moments.

Problem

The moment tensor EX∼M[X⊗t ] requires a quasipolynomial number of
samples to estimate accurately.

Problem

The moment tensor EX∼M[X⊗t ] requires quasipolynomial time to write
down.
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Our Approach

We will still use information about moments of degree
t = Θ(log k/ log log k)

We develop new techniques for accessing/manipulating this information
more efficiently
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Important Ingredients

1 Estimating degree t = Θ(log k/ log log k) moments accurately

We show certain projections of the moment tensor have polynomially
bounded variance
We can estimate these projections sample-efficiently

2 Representing the degree t = Θ(log k/ log log k) moment tensor
efficiently

We only need to perform a restricted set of operations on the
moment tensor
These can be performed implicitly in polynomial time
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Reducing to the difference mixture

Instead of working directly with the mixture M =
∑k

i=1
1
kN(µi , I ), we

will work with the difference mixture

Difference Mixture: distribution of the random variable
Y = (X − X ′)/

√
2, for X ,X ′ ∼ M.

This is a new isotropic GMM with k(k − 1) + 1 components

One component has mean 0

The rest have mean that is at least ∆-far from 0.

Let M be the difference mixture for the rest of this talk
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Reducing to the difference mixture (cont.)

To cluster the original mixture, it suffices to, detect if a sample comes
from the 0 component or another component.

Let M = w0N(0, I ) +
∑k

i=1 wiN(µi , I ) be a difference mixture, so that:

wi ≥ 1/poly(k)

∥µi∥2 ≥ ∆

Problem

Let X1, . . . ,Xn be a set of polynomially many samples from M. Given a
new sample X ′ ∼ M, distinguish between the case where X ′ ∼ N(0, I ),
and X ′ ∼ N(µi , I ), for some i ≥ 1.

For simplicity, also assume that ∆ = poly(log k), and
∥µi∥2 = poly(log k), for all i .
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Reducing to the difference mixture (cont.)
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Test Functions

Goal: design a test function for distinguishing

Given a sample X ∼ M, we compute the test function f (X )

We want the following properties:

1 f (X ) is small with high probability if X is from the 0-component

2 f (X ) is large with high probability if X is from a component with
mean bounded away from 0

Test function f will be a polynomial of degree t. The key will be to
bound the variance.
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The Hermite polynomial tensor

In 1D, Hermite polynomials are hm+1(x) = xhm(x)−mhm−1(x)

h1(x) = x , h2(x) = x2 − 1, h3(x) = x3 − 3x , . . .

Key property: Ex∼N(µ,1)[ht(x)] = µt

In higher dimensions we can construct an analog ht where ht(X ) for

X ∈ Rd is a tensor in Rd⊗t

that is a polynomial in X

h1(x) = X , h2(x) = X⊗2 − Id×d , h3(X ) = X⊗3 −
∑

sym Id×d ⊗X , . . .

Key property: EX∼N(µ,I )[ht(X )] = µ⊗t
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Properties of the Hermite polynomial tensor

ht(X ) is an unbiased estimator for µ⊗t

It has bounded variance, i.e. for any v ∈ Rd t

with ∥v∥ = 1,

E
X∼N(0,I )

[
⟨v , ht(X )⟩2

]
≤ O(t)t = poly(k) .

It reliably witnesses large means, i.e. if ∥µ∥ ≥ Ω(t1/2) and
X ∼ N(µ, I ), then with high probability,

⟨ht(X ), µ⊗t⟩ ≥ (0.8 ∥µ∥)2t ≥ poly(k) .
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Initial Attempt

Properties of the Hermite Polynomial Tensor

Bounded Variance: for all unit vectors v ∈ Rd t

E
X∼N(0,I )

[
⟨v , ht(X )⟩2

]
≤ poly(k) .

Large Signal: If ∥µ∥ ≥ Ω(t1/2) and X ∼ N(µ, I ), then w.h.p.

⟨ht(X ), µ⊗t⟩ ≥ (0.8 ∥µ∥)2t ≥ poly(k) .

Attempt: Try f (X ) = ∥ht(X )∥ i.e. check whether ∥ht(X )∥ is sufficiently
large

Issue: we only know that the variance of ht(X ) in each direction is
bounded but it has d t entries which is too many
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Projecting onto the “Signal” Subspace

Properties of the Hermite Polynomial Tensor

Bounded Variance: for all unit vectors v ∈ Rd t

E
X∼N(0,I )

[
⟨v , ht(X )⟩2

]
≤ poly(k) .

Large Signal: If ∥µ∥ ≥ Ω(t1/2) and X ∼ N(µ, I ), then w.h.p.

⟨ht(X ), µ⊗t⟩ ≥ (0.8 ∥µ∥)2t ≥ poly(k) .

Main Idea: We instead let f (X ) = ∥Πht(X )∥ where Π projects onto a
low dimensional subspace that “captures the signal”

Want Π to project onto span(µ⊗t
1 , . . . , µ⊗t

k ) - which is k-dimensional!
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Designing the Test Functions

Test Function: set f (x) = ∥Πtht(X )∥ where Πt to projects onto
span(µ⊗t

1 , . . . , µ⊗t
k )

Recall we need to verify the following properties

1 f (X ) is small with high probability if X is from the 0-component

Lemma: 0-component

Let X ∼ N(0, I ). Then ∥Πtht(X )∥ ≤ k1/2 · O(t)t/2 with high probability.

2 f (X ) is large with high probability if X is from a component with
mean bounded away from 0

Lemma: Nonzero-component

Let X ∼ N(µi , I ), where ∥µi∥ ≥ Ω(t1/2). Then ∥Πtht(X )∥ ≥ (0.8 ∥µi∥)t
with high probability.
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Verifying Soundness

First, for simplicity, assume we exactly know Πt = span(µ⊗t
1 , . . . , µ⊗t

k )

If ∆ ≥ Ω
(
log1/2+c k

)
, and t = Θ

(
log k

log log k

)
, then

k1/2 · O(t)t/2︸ ︷︷ ︸
Zero Case

≪ (0.8 ∥µi∥)t︸ ︷︷ ︸
Nonzero Case

.

This gives us a way to solve the distinguishing problem!

Takeaway: if we know Πt = span(µ⊗t
1 , . . . , µ⊗t

k ) then we can cluster
with polynomially many samples
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Outline

The barrier to existing approaches

Our techniques

Implicit Moment Estimation
Implicit Moment Computation

Putting it all together
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Important Ingredients

1 Estimating degree t = Θ(log k/ log log k) moments accurately

We show certain projections of the moment tensor have polynomially
bounded variance
We can estimate these projections sample-efficiently

2 Representing the degree t = Θ(log k/ log log k) moment tensor
efficiently

We only need to perform a restricted set of operations on the
moment tensor
These can be performed implicitly in polynomial time
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What Do We Need to Compute?

Computing the Projection: need to compute Πt that projects onto the
subspace span(µ⊗t

1 , . . . , µ⊗t
k )

Evaluating the Projection: need to compute Πtht(X ) i.e. apply the
projection to a Hermite polynomial tensor

Preview

Main idea: we construct such a representation inductively (in t)

Πt : Rd t → Rk is too large to write down – we will compute an
implicit representation of Πt that has polynomial size and allows us
to perform certain restricted operations in polynomial time
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Iterative projection maps

Inductive Step: Let Πs−1 = span
(
µ
⊗(s−1)
1 , . . . , µ

⊗(s−1)
k

)

Assume we have some implicit representation of Πs−1

Goal: Construct a representation of Πs = span
(
µ⊗s
1 , . . . , µ⊗s

k

)
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Constructing the Projection (cont.)

Given samples X1, . . . ,Xn ∼ M, estimate

1

n

n∑
i=1

h2s(Xi ) ≈ E
X∼M

[h2s(X )] =
k∑

i=1

wiµ
⊗2s
i .

If we treat this as a d s × d s matrix, we can write this as

T2s =
k∑

i=1

wi

(
µ⊗s
i

) (
µ⊗s
i

)⊤
.

This is a rank-k matrix whose nontrivial eigenvectors are exactly the span
of {µ⊗s

i }.

This matrix is too large to work with, but we can make use of the
inductive step
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Constructing the Projection (cont.)

Define the projection matrix

Bs = Id×d ⊗ Πs−1 : Rd s

→ Rdk .

We can instead estimate As ∈ Rdk×dk given by

As =
1

n

n∑
i=1

Bsh2s(Xi )B
⊤
s ≈

k∑
i=1

wi

(
Bsµ

⊗s
i

) (
Bsµ

⊗s
i

)⊤

Now we let Γs : Rdk → Rk denote the projection onto the top k
eigenvectors of As

This approximates the span of {Bsµ
⊗s
i }

We set Πs = ΓsBs
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Analysis without Noise

Define the matrix

Bs = Id×d ⊗ Πs−1 : Rd s

→ Rdk .

and assume Πs−1 = span
(
µ
⊗(s−1)
1 , . . . , µ

⊗(s−1)
k

)

Let Γs : Rdk → Rk denote the projection onto the span of {Bsµ
⊗s
i }.

Claim: span
(
µ⊗s
1 , . . . , µ⊗s

k

)
= ΓsBs .

Proof: It suffices to check that ΓsBs preserves the norm of all µ⊗s
i .∥∥ΓsBsµ

⊗s
i

∥∥ =
∥∥Bsµ

⊗s
i

∥∥
=

∥∥∥µi ⊗ Πs−1µ
⊗(s−1)
i

∥∥∥
= ∥µi∥

∥∥∥Πs−1µ
⊗(s−1)
i

∥∥∥ = ∥µi∥s .
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Summary of the Full Construction

Given an efficient representation of Πs−1, and samples X1, . . . ,Xn ∼ M:

1 Let Bs = Id×d ⊗ Πs−1.

2 Using samples, estimate the matrix As ∈ Rdk×dk

As =
1

n

n∑
i=1

Bsh2s(Xi )B
⊤
s ≈

k∑
i=1

wi

(
Bsµ

⊗s
i

) (
Bsµ

⊗s
i

)⊤
3 Let Γs : Rdk → Rk project onto the top k eigenvectors of As .

4 Output Πs = ΓsBs .
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Evaluations with the Implicit Projection

We constructed Γs : Rdk → Rk so that

Πs = Γs (Id×d ⊗ Πs−1) .

Unraveling the recursion, this yields a series of projection matrices
Γ1, . . . , Γs : Rdk → Rk so that

Πs = Γs (Id×d ⊗ Γs−1 (Id×d ⊗ . . .)) .

This is a polynomial-sized implicit representation!

Key Fact: Πsv can be computed efficiently on rank-1 tensors i.e. of the
form v = v1 ⊗ · · · ⊗ vs because

Πs(v1 ⊗ · · · ⊗ vs) = Γs(v1 ⊗ Πs−1(v2 ⊗ · · · ⊗ vs)

We can (only) efficiently apply the projection to rank-1 tensors
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What Do We Need to Compute?

Computing the Projection: need to compute Πt that projects onto the
subspace span(µ⊗t

1 , . . . , µ⊗t
k )

Evaluating the Projection: need to compute Πtht(X ) i.e. apply the
projection to a Hermite polynomial tensor

Want to show: To evaluate Πtht(X ), we need to represent ht(x) as a
low-rank tensor!
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Low rank approximations of Hermite polynomials

Unfortunately ht(X ) does not appear to be a low-rank tensor - it
contains terms of the form Id×d ⊗ · · · ⊗ Id×d

However, we can introduce additional variables z1, . . . , zt ∼ N(0, I ) and a
polynomial Rt such that

E
z1,...,zt∼N(0,I )

[Rt(X , z1, . . . , zt)] = ht(X )

We view Rt(X ) as a polynomial with random coefficients
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Low rank approximations of Hermite polynomials (cont.)

Lemma

For all t, there is a (random) polynomial Rt : Rd → Rd t

satisfying:

Unbiased: For all X ∈ Rd , we have

E
Rt

[Rt(X )] = ht(X ) .

Bounded Variance: For all v ∈ Rd t

with ∥v∥ = 1, we have

E
X∼N(µ,I ),Rt

[
⟨v ,Rt(X )⟩2

]
≤ O(t)t · (∥µ∥2t + 1) .

Low Rank: Rt can always be written as a sum of poly(k) many
(explicit) rank-1 tensors.

Proof: See paper...



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

Low rank approximations of Hermite polynomials (cont.)

Lemma

For all t, there is a (random) polynomial Rt : Rd → Rd t

satisfying:

Unbiased: For all X ∈ Rd , we have

E
Rt

[Rt(X )] = ht(X ) .

Bounded Variance: For all v ∈ Rd t

with ∥v∥ = 1, we have

E
X∼N(µ,I ),Rt

[
⟨v ,Rt(X )⟩2

]
≤ O(t)t · (∥µ∥2t + 1) .

Low Rank: Rt can always be written as a sum of poly(k) many
(explicit) rank-1 tensors.

Proof: See paper...



Introduction Barrier to Previous Approaches Implicit Moment Estimation Implicit Moment Computations Full Clustering

Outline

The barrier to existing approaches

Our techniques

Implicit Moment Estimation
Implicit Moment Computation

Putting it all together
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The full algorithm (sort of)

Given samples X1, . . . ,Xn ∼ M, and another sample X ′ ∼ M:

1 Let t = Θ(log k/ log log k).

2 Compute Implicit Projection: Using X1, . . . ,Xn, apply the
previous subroutine to find a representation of Πt as a sequence of
projection matrices Γ1, . . . , Γt .

3 Test Sample: Compute α = ∥ΠtRt(X
′)∥ ≈ ∥Πtht(X

′)∥ (computed
efficiently using low-rank representation of Rt)

4 If α < k1/2O(t)t/2, say that X ′ belongs to the 0 mean cluster,
otherwise, say it belongs to a non-zero mean cluster.
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Generalizing to Poincaré

A distribution is σ-Poincaré if

Var[f (X )] ≤ σ2 E
[
∥∇f (X )∥2

]
.

Well studied class of distributions, including Gaussians, product
distributions, and log-concave distributions (thanks to KLS).

Our techniques generalize almost directly to Poincaré distributions, by
using adjusted polynomials in place of Hermite polynomials.

Here, we require separation ∆ = Θ(log1+c k), but this is
information-theoretically necessary, since Poincaré distributions could
have worse concentration.
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In Full Generality

The procedure we discussed will distinguish between the zero-mean
cluster and other clusters only if all the nonzero means have comparable
norm.

If the means have drastically different norms, the signals from the smaller
means will get “washed out”

To circumvent this and obtain a perfect clustering, we exploit the
structure of Gaussians to recursively cluster

It is not clear how to do this recursion for general Poincaré
distributions.
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Summary

We give an algorithm for clustering mixtures of isotropic Gaussians with
nearly optimal separation

Overcomes barriers to previous approaches requiring
quasi-polynomial time

Techniques for accessing moment information at degree
t = Θ(log k/ log log k) in polynomial time

More general GMMs/other mixture models?

Other applications of the implicit moment estimation technique?

Thanks!
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