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distribution: p,

samples: X;,...,X ~ p,

n

o\

estimator: 0

goal: ||6 — 6A’(X)H small

1. robustness 2. privacy
changing a sample does not

change the output
distribution

works under 7
fraction corruption
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p(0) x exp(—e score(d; X))
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INVERSE SENSITIVITY

low sensitivity score

score(d, X) = min Ham(X, X’) such that 0 is good for X’
p

ﬁey insigﬁt: inverse sensitivity exp mech OUtputs [ow

scoring Jooints when ajoy[iea[ to robust estimators
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CHALLENGES

0:Er% AKX, 0,2) = ||EO—0%|| <a

oo i

9, z indeterminates works under 7 corruption

sos based robust estimator

Computing score robust estimator

score(d, X) = min Ham(X, X’) such that 6 thinks (X, 0) are good
=

efficient sampling p(0) x exp(—e score(d; X))
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score(d; X) := min such that
4

3 degree O(1) E in X', w", 0, z
EEC, |EO-0| <La

new score

accuracy privacy

EE G — |IEQ' — 0%|| < O(np) still low sensitivity

sos proofs generalize
low scoring E gives high quality
estimate
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score(d; X) := min such that
4

3 degree O(1) Ein X', w', 0, 7
EEC, |EO-0| <La

new score

: binary search?
computing score :
issue: fix t, can't verify if E exists or not

i £

bit complextiy
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EFFICIENT SAMPLING

score(d; X) := min such that
4

3 degree O(1) E in X', w", 0, z
EEC, |EO-0| <La

Issue: score is not convex

L = & 5
[El I: Ctl’ [E2 I: Ctl - — E(El = [E2) |= C%(l1+12)

but, it's quasi-convex:
the sub-level sets {0 : score(d; X) < ¢} are convex

—> we can design a sampler



CHALLENGES

score(d; X) := min such that
4

3 degree O(1) E in X', w", 0, z
EEC, ||EO-0| <La

efficiently computable
approximate satisfiability, ellipsoid,
binary search

efficient and private sampler for
efficient sampling | quasi-convex score
convex body sampling techniques
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1. make a score function S(8; X)
for sos based robust estimators, make the score as
described in the previous slides
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. show it has bounded sensitivity
. show it is quasi-convex
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can find the score up to error y in time

poly log(1/y), we showed this for sos based scores




RECIPE

. make a score function S(&; X)

. show it has bounded sensitivity

. show it is quasi-convex

. show it is efficiently computable

. show it can be efficiently approximately minimized

can find a point with score of min S + 1
0




RECIPE

make a score function S(; X) (exp mechanism)

show it has bounded sensitivity (privacy)

show it is quasi-convex (efficient sampling)

show it is efficiently computable (computing score)

show it can be efficiently approximately minimized (efficient sampling)

Theorem: Let V, be the volume of points with score
less than nn, ny > 0. Then if there exists a point with
score less than 7yn, the exponential mechanism with
score function S as above outputs a point with score
less than 25yn with high probability, as long as

log(V”/ V’Yo)

n=EQ| max
no<n<l €N
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GAUSSIAN MEAN ESTIMATION

assumption: | |[¢]] <R

Theorem: There exists a private and polynomial time
algorithm that can estimate the mean of 4/ (u, ) up to

error a using n samples.

d dlogR
| , under (&,0)-dp

E

d log(1l/o
| o )), under (&, 0)-dp

E




LEARNING GAUSSIANS

assumption: [|lgll <R,

Theorem: There exists a private and polynomial time
algorithm that can estimate //(y, 2) up to TV distance

a using n samples.

d* d’logK dlogR
+ , under (&,0)-dp

E E

d*> log(1/6
| o8 )>, under (&, 0)-dp

E




