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@ For example, if X = (Xi,..., Xn) ~ N(0, In) then E||X]|2 € [\/%, \/ﬁ] and
X2 ~ ElIX|o| < V2t

with probability at least 1 — e~L.
@ Typically, a.s. boundedness or exponential integrability assumptions are imposed.

What if the random variables of interest have heavy tails?

@ For the purpose of this talk, a random variable Z has heavy-tailed distribution if
E|Z|f = 0o

for some k > 2.
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Sub-Gaussian mean estimation in R
@ Goal: construct an estimator iy satisfying

- t _
P(Iuwul > CUVN) <2e!

where C is an absolute constant.
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@ Xi,...,Xn—iid. copies of X € R? such that
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@ Goal: construct an estimator uy satisfying
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where Cy, C, are absolute constants, ||-|| - Euclidean norm.



2011 - onwards: large literature on Robustness, both in the Mathematical Statistics and the TCS
communities:

@ J.-Y. Audibert, A. Minasyan, S. Bahmani, P. Bartlett, V. Brunel, O. Catoni, A. Dalalyan, L.
Devroye, G. Depersin, J. Fan, C. Gao, A. louditski, Y. Klochkov, J. Kwon, G. Lecué, M.
Lerasle, G. Lugosi, S. Mendelson, A. Minasyan, T. Mathieu, M. Ndaoud, R. Oliveira, Z. Rico,

A. Tsybakov, I. Giulini, N. Zhivotovskiy.
@ Everyone in this audience and beyond..
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Sub-Gaussian mean estimation in R
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Sub-Gaussian mean estimation in R

@ The Median of Means estimator: early references include [A. Nemirovski, D. Yudin ‘83; M. Jerrum, L.
Valiant, V. Vazirani ‘86; N. Alon, Y. Matias, M. Szegedy ‘96; D. Hsu '10, R. Oliveira, M. Lerasle ‘11]
Split the sample into k “blocks” Gy, . .., Gk of size m ~ N/k each

@ Then
Pr (ﬁN —ul >76x 04 :,) <ek

@ Compare to the case of Gaussian distribution:

- [k
Pr<|XN—,u2\/§><J N> <26k

o Is the constant v/2 + o(1) attainable for heavy-tailed distributions?
@ A closely related question of efficiency has been central to mathematical statistics.
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@ Define

- o v . 3 (m)
= argmin ——— — Xyl =median ( X;, J€ A
= RN T = meten (S A7)

JeA
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MOM and U-statistics

@ Define

fiy = argmin 1T Z |z — X,| = median ()_(J, Je Ag\,m))
ZeR (m) JeA%")

Alternatively, iy is the Hodges-Lehmann estimator of order m.
@ For example, if N = 4 and m = 2, there will be 6 means:

Xi+Xo X1+ Xz Xi+ Xy Xo4+Xz3 Xo+ Xy X3+ Xy
2 2 2 2 2 2

Xi+X  Xa+Xe
K 2 -

versus 2 means for the “standard” MOM: 5
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MOM and U-statistics

@ Do we need to include the blocks that are nearly identical?

@ Improvement: only leave the blocks of data that are
“sufficiently different”.
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z
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“permutation-invariant” MOM: (i) = 70 means.
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MOM and U-statistics

@ Example: sample size N = 8, block size m = 4, and let

Xy + Xo Xz + Xy Xs + Xs X7 + Xg
1 2 y L2 2 s &3 2 y &4 2
Now form all averages among the pairs of Z’s: we will have 6 means.

@ If mis the size of each “block,” it suffices to consider blocks which differ by
at least —— points.

log(m)
@ Formally, let n = % [log(m)], and create a “new sample” Z, ..., Z, using mini-batches of
size ¢ = m/|log(m)]|:
Xiooo X m o Xn_ ¢
! TToa(m] N= Tog(m +1 N
N’
Zi=g X Xi Zn=§ Enogr1 Xi

@ Define

fiyy := median (ZJ, Je A%U(’g(mm)

where AL = {J C {1,...,n}: |J| = [log(m)]} and X, = 1t Yicy 2



Performance guarantees

Theorem (M. 23)

Assume that E |(X — p)/o|>T < oo for some e > 0. Then for any 1 < t = o(N/ log?(N)) there
exists a version of [y, such that

P(Iﬂ’w —ul > (V2 + op,N(1))a\/Z> < (2+on(1))e "




Proof ideas

@ Problem: understand concentration properties of U-statistics
1 .
Un,m(h) = ™ > h(X, i€
™ Je A

where h is bounded and m = m(N) grows with N.



Variance of U-stiatistics

@ Hoeffding’s decomposition: Uy m(h) = (17) ZJEA(m) h(X;, i eJ),
N

m

N
Unm(h) — EUy m(h) = % S :E[h(X1,...,Xm) | x,-] + Remainder
=

Hajek projection



Variance of U-stiatistics

@ Hoeffding’s decomposition: Uy, m( ( ) JE‘AS\Im) h(X;, i €J),

N
Un.m(h) — EUym(h) = Z [h(x1,...,xm)|x,-]+Remainder

m
N

Hajek projection

Key challenge: the remainder is a function of random variables with small variance and large
sup-norm.
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Mean estimation in R? (joint with N. Strawn)

@ “Geometric” median of means:
k

fiy = argmin » _ ||z = Xj||
zeRrd

o It satisfies, with k = |4t] + 1,

P<|Iﬁ~ —ull > 11\/”(2,\3"> <26

— sub-Gaussian deviations when r(X) := tﬁ(Tzn) is small.

@ Is it the best possible bound? No: for large classes of distributions P,

IP’(IITM\/ —pll = C(P) <\/ % + \//\max(Z)\/E>> <e Vi
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Improved bounds for the geometric MOM

Let &, be the distribution of X, = 1. 3, X;. Then

N — 1 = median ($m> — p+ py — median <<T>m)

“bias” stochastic error

Theorem (M., N. Strawn)

Assume that Y has absolutely continuous distribution Py on a subspace of R%. Then

lmedian (Py) — || < min (\/tf(zv), VIEy]

E'/2||Y — median (Py)|| 2
E||Y — median(Py))||~" ]

Note that

E'/2||Y — median (Py)| 2 :/ P(IlY —median (Py) |1 < t) %
0

“small ball” probability



Equivalence of negative moments of the norm

Lemma (M., N. Strawn)

Assume that Y has normal distribution N(0, Xy) such that the effective rank of the covariance
matrix r(Xy) > 10. Then
E'/2||Y — median (Py)|| 2 -
E|Y — median(Py)| ™"

for an absolute constant C.




Equivalence of negative moments of the norm

Given an absolutely continuous random vector/variable X with density py, let

M(X) := llpxl

Lemma (S.M., N. Strawn ‘23)
Assume that Y € R is given by a linear transformation
Y=AZ

where Z = (ZM, ..., Z() € R s a random vector with independent coordinates such that
¥ 7 = lx. Moreover, suppose that r(Xy) > 4. Then

E'/2 || Y — median (Py)| 2
E|Y — median(Py)| ™"

<C maka(Z(j))
=1,

G009

for an absolute constant C.




Equivalence of negative moments of the norm

Given an absolutely continuous random vector/variable X with density py, let

M(X) := lIpxl o

Lemma (S.M., N. Strawn ‘23)

LetY e RY, d > 3 be a random vector with absolutely continuous distribution and covariance
matrix Xy. Then

27:1 Aj
d (HL /\i)w

for an absolute constant C, where A\ > ... > Ay are the eigenvalues of Xy .
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Equivalence of negative moments of the norm
Given an absolutely continuous random vector/variable X with density py, let

M(X) = llpxl o

Lemma (S.M., N. Strawn ‘23)

LetY e RY, d > 3 be a random vector with absolutely continuous distribution and covariance
matrix Xy. Then

d
Dot A
1/d

d (H;"’a >‘i>

E'/2||Y — median (Py)|| 2
E|Y — median(Py)||~"

< oM/ (£y'2Y)

for an absolute constant C, where A\ > ... > Ay are the eigenvalues of Ly .

@ For example, if \; = /% for o < 1, then

Z,da Aj
a(7x) "

@ Extensions to “perturbations” of distributions with nice covariance structrures.

< C(a).



Main results

@ Stochastic error: key observation is that

PR
1 Xj—m
k,.;nfq-—mn

tr(X)k
N

Hﬁ,\, — median ($m) H <




Main results

Theorem (M., N. Strawn)

Assume that Y € RY has “nice” heavy-tailed distribution P. Then

7w~ pl < Cr (\/”(,f’ + ¢||z\/§>

with probability at least 1 — e~ Vk.




Some open questions

@ Are there natural classes of heavy-tailed distributions for which the geometric median of
means achieves sub-Gaussian performance?

@ Can one construct multivariate robust mean estimators with “optimal” constants?



