
The Median of Means Estimator:
Old and New

Stas Minsker

Department of Mathematics, USC

June 2024

New Frontiers in Robust Statistics

[based in part on a joint work with Nate Strawn]



Concentration of measure

Concentration of measure phenomenon formalizes the idea that

nice functions of many independent random variables are “essentially constant”

This idea can serve as a "bridge" between random and deterministic quantities.

Examples include the Gaussian (Borell-TIS) inequality, bounded difference (McDiarmid’s)
inequality, Talagrand’s inequality, matrix Bernstein’s inequality, etc.
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For example, if X = (X1, . . . ,Xn) ∼ N(0, In) then E‖X‖2 ∈
[
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,
√

n
]

and∣∣∣‖X‖2 − E‖X‖2

∣∣∣ ≤ √2t

with probability at least 1− e−t .

Typically, a.s. boundedness or exponential integrability assumptions are imposed.

What if the random variables of interest have heavy tails?

For the purpose of this talk, a random variable Z has heavy-tailed distribution if

E|Z |k =∞

for some k > 2.
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Sub-Gaussian mean estimation in R

X1, . . . ,XN – i.i.d. copies of X ∈ R such that

EX = µ, Var(X) = σ2

Goal: construct an estimator µ̂N satisfying

P

(
|µ̂N − µ| ≥ Cσ

√
t
N

)
≤ 2e−t

where C is an absolute constant.
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Sub-Gaussian mean estimation in Rd

X1, . . . ,XN – i.i.d. copies of X ∈ Rd such that

EX = µ, E(X − µ)(X − µ)T = Σ
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where C1,C2 are absolute constants, ‖·‖ - Euclidean norm.
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2011 - onwards: large literature on Robustness, both in the Mathematical Statistics and the TCS
communities:

J.-Y. Audibert, A. Minasyan, S. Bahmani, P. Bartlett, V. Brunel, O. Catoni, A. Dalalyan, L.
Devroye, G. Depersin, J. Fan, C. Gao, A. Iouditski, Y. Klochkov, J. Kwon, G. Lecué, M.
Lerasle, G. Lugosi, S. Mendelson, A. Minasyan, T. Mathieu, M. Ndaoud, R. Oliveira, Z. Rico,
A. Tsybakov, I. Giulini, N. Zhivotovskiy.

Everyone in this audience and beyond..



Heavy tails vs Adversarial Contamination

Assume that instead of X1, . . . ,XN , we observe Y1, . . . ,YN where

Yj 6= Xj , j ∈ J for |J| ≤ εN

Connection to heavy tails (A. Prasad, S. Balakrishnan, P. Ravikumar ’19):
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Works fine in 1d but not in Rd . A better idea: consider each direction separately.
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Sub-Gaussian mean estimation in R

The Median of Means estimator: early references include [A. Nemirovski, D. Yudin ‘83; M. Jerrum, L.

Valiant, V. Vazirani ‘86; N. Alon, Y. Matias, M. Szegedy ‘96; D. Hsu ’10, R. Oliveira, M. Lerasle ‘11]

Split the sample into k “blocks” G1, . . . ,Gk of size m ≈ N/k each
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X1, . . . ,X|G1|︸ ︷︷ ︸

X̄1:= 1
|G1|

∑
Xi∈G1

Xi

. . . . . .

Gk︷ ︸︸ ︷
XN−|Gk |+1, . . . ,XN︸ ︷︷ ︸

X̄k := 1
|Gk |

∑
Xi∈Gk

Xi︸ ︷︷ ︸
µ̃N :=median(X̄1,...,X̄k )

Then

Pr

(
|µ̃N − µ| ≥ 7.6× σ

√
k
N

)
≤ e−k

Compare to the case of Gaussian distribution:

Pr

(
|X̄N − µ| ≥

√
2× σ

√
k
N

)
≤ 2e−k

Is the constant
√

2 + o(1) attainable for heavy-tailed distributions?

A closely related question of efficiency has been central to mathematical statistics.
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Optimal constants

Prior work:

O. Catoni ‘11; L. Devroye, M. Lerasle, G. Lugosi, R. Oliveira ‘16: C =
√

2 + oN (1) if an upper
bound for the kurtosis is known.

J. Lee, P. Valiant ‘22: C =
√

2 + oN,t (1), only finite variance required.

This talk: C =
√

2 + oP,N (1) for the modified MOM.



Optimal constants

Prior work:

O. Catoni ‘11; L. Devroye, M. Lerasle, G. Lugosi, R. Oliveira ‘16: C =
√

2 + oN (1) if an upper
bound for the kurtosis is known.

J. Lee, P. Valiant ‘22: C =
√

2 + oN,t (1), only finite variance required.

This talk: C =
√

2 + oP,N (1) for the modified MOM.



Optimal constants

Prior work:

O. Catoni ‘11; L. Devroye, M. Lerasle, G. Lugosi, R. Oliveira ‘16: C =
√

2 + oN (1) if an upper
bound for the kurtosis is known.

J. Lee, P. Valiant ‘22: C =
√

2 + oN,t (1), only finite variance required.

This talk: C =
√

2 + oP,N (1) for the modified MOM.



Optimal constants

Prior work:

O. Catoni ‘11; L. Devroye, M. Lerasle, G. Lugosi, R. Oliveira ‘16: C =
√

2 + oN (1) if an upper
bound for the kurtosis is known.

J. Lee, P. Valiant ‘22: C =
√

2 + oN,t (1), only finite variance required.

This talk: C =
√

2 + oP,N (1) for the modified MOM.



Optimal constants

Prior work:

O. Catoni ‘11; L. Devroye, M. Lerasle, G. Lugosi, R. Oliveira ‘16: C =
√

2 + oN (1) if an upper
bound for the kurtosis is known.

J. Lee, P. Valiant ‘22: C =
√

2 + oN,t (1), only finite variance required.

This talk: C =
√

2 + oP,N (1) for the modified MOM.



MOM and U-statistics

Let Φ̃m be the distribution of 1
m
∑m

j=1 Xj .

median
(

Φ̃m

)
minimizes F (z) = E

∣∣∣ 1
m
∑m

j=1 Xj − z
∣∣∣.

A UMVUE of F (z) is the U-statistic [Halmos, ‘46, Hoeffding ‘48, Fraser ‘54]

FN (z) :=
1(N
m

) ∑
J∈A(m)

N

∣∣X̄J − z
∣∣

where A(m)
N = {J ⊂ {1, . . . ,N} : |J| = m} and X̄J = 1

m
∑

i∈J Xi .

Define

µ̂N := argmin
z∈R

1(N
m

) ∑
J∈A(m)

N

∣∣z − X̄J
∣∣ = median

(
X̄J , J ∈ A(m)

N

)

Alternatively, µ̂N is the Hodges-Lehmann estimator of order m.

For example, if N = 4 and m = 2, there will be 6 means:

X1 + X2

2
,

X1 + X3

2
,

X1 + X4

2
,

X2 + X3

2
,

X2 + X4

2
,

X3 + X4

2

versus 2 means for the “standard” MOM: X1+X2
2 ,

X3+X4
2 .
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MOM and U-statistics

Do we need to include the blocks that are nearly identical?

Improvement: only leave the blocks of data that are
“sufficiently different”.

If m is the size of each “block,” it suffices to consider blocks which differ by
at least m

log(m)
points.

Formally, let n = N
m blog(m)c, and create a “new sample” Z1, . . . ,Zn using mini-batches of

size ` = m/blog(m)c:

X1, . . . ,X m
blog(m)c︸ ︷︷ ︸

Z1:= 1
`

∑`
i=1 Xi

. . . . . .XN− m
blog(m)c+1, . . . ,XN︸ ︷︷ ︸

Zn := 1
`

∑N
i=N−`+1 Xi

Define

µ̂′N := median
(

Z̄J , J ∈ A(blog(m)c)
n

)
where A(`)

n = {J ⊂ {1, . . . , n} : |J| = blog(m)c} and X̄J = 1
blog(m)c

∑
i∈J Zi .
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Example: sample size N = 8, block size m = 4, and let

Z1 =
X1 + X2

2
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2
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2
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at least m

log(m)
points.

Formally, let n = N
m blog(m)c, and create a “new sample” Z1, . . . ,Zn using mini-batches of

size ` = m/blog(m)c:

X1, . . . ,X m
blog(m)c︸ ︷︷ ︸

Z1:= 1
`

∑`
i=1 Xi

. . . . . .XN− m
blog(m)c+1, . . . ,XN︸ ︷︷ ︸

Zn := 1
`

∑N
i=N−`+1 Xi

Define

µ̂′N := median
(

Z̄J , J ∈ A(blog(m)c)
n

)
where A(`)

n = {J ⊂ {1, . . . , n} : |J| = blog(m)c} and X̄J = 1
blog(m)c

∑
i∈J Zi .
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Performance guarantees

Theorem (M. ‘23)

Assume that E |(X − µ)/σ|2+ε <∞ for some ε > 0. Then for any 1 ≤ t = o(N/ log2(N)) there
exists a version of µ̂′N such that

P

(∣∣µ̂′N − µ∣∣ ≥ (
√

2 + oP,N (1))σ

√
t
N

)
≤ (2 + oN (1))e−t .



Proof ideas

Problem: understand concentration properties of U-statistics

UN,m(h) =
1(N
m

) ∑
J∈A(m)

N

h (Xi , i ∈ J)

where h is bounded and m = m(N) grows with N.



Variance of U-stiatistics

Hoeffding’s decomposition: UN,m(h) = 1(
N
m

)∑
J∈A(m)

N
h (Xi , i ∈ J),

UN,m(h)− EUN,m(h) =
m
N

N∑
j=1

E
[
h(X1, . . . ,Xm) |Xi

]
︸ ︷︷ ︸

Hájek projection

+ Remainder



Variance of U-stiatistics

Hoeffding’s decomposition: UN,m(h) = 1(
N
m

)∑
J∈A(m)

N
h (Xi , i ∈ J),

UN,m(h)− EUN,m(h) =
m
N

N∑
j=1

E
[
h(X1, . . . ,Xm) |Xi

]
︸ ︷︷ ︸

Hájek projection

+ Remainder

Key challenge: the remainder is a function of random variables with small variance and large
sup-norm.



Mean estimation in Rd (joint with N. Strawn)

X1, . . . ,XN – i.i.d. copies of X ∈ Rd such that

EX = µ, E(X − µ)(X − µ)T = Σ

“Geometric” median of means:

µ̃N = argmin
z∈Rd

k∑
j=1

∥∥z − X̄j
∥∥

It satisfies, with k = b4tc+ 1,

P

(
‖µ̃N − µ‖ ≥ 11

√
tr(Σ) · t

N

)
≤ 2e−t

=⇒ sub-Gaussian deviations when r(Σ) := tr(Σ)
‖Σ‖ is small.
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Mean estimation in Rd (joint with N. Strawn)

“Geometric” median of means:

µ̃N = argmin
z∈Rd

k∑
j=1

∥∥z − X̄j
∥∥

It satisfies, with k = b4tc+ 1,

P

(
‖µ̃N − µ‖ ≥ 11

√
tr(Σ) · t

N

)
≤ 2e−t

=⇒ sub-Gaussian deviations when r(Σ) := tr(Σ)
‖Σ‖ is small.

Is it the best possible bound? No: for large classes of distributions P,

P

(
‖µ̃N − µ‖ ≥ C(P)

(√
tr(Σ)

N
+
√
λmax(Σ)

√
t
N

))
≤ e−

√
t .



Improved bounds for the geometric MOM

Let Φ̃m be the distribution of X̄m = 1
m
∑m

j=1 Xj . Then

µ̃N − µ = median
(

Φ̃m

)
− µ︸ ︷︷ ︸

“bias”

+ µ̃N −median
(

Φ̃m

)
︸ ︷︷ ︸

stochastic error
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Theorem (M., N. Strawn)

Assume that Y has absolutely continuous distribution PY on a subspace of Rd . Then

‖median (PY )− µ‖ ≤ min

(√
tr(ΣY ),

√
‖ΣY ‖

E1/2 ‖Y −median (PY )‖−2

E ‖Y −median (PY ))‖−1

)
.
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Theorem (M., N. Strawn)

Assume that Y has absolutely continuous distribution PY on a subspace of Rd . Then

‖median (PY )− µ‖ ≤ min

(√
tr(ΣY ),

√
‖ΣY ‖

E1/2 ‖Y −median (PY )‖−2

E ‖Y −median (PY ))‖−1

)
.

Note that
E1/2 ‖Y −median (PY )‖−2 =

∫ ∞
0

P
(
‖Y −median (PY ) ‖2 ≤ t

)
︸ ︷︷ ︸

“small ball” probability

dt
t2



Equivalence of negative moments of the norm

Lemma (M., N. Strawn)
Assume that Y has normal distribution N(0,ΣY ) such that the effective rank of the covariance
matrix r(ΣY ) > 10. Then

E1/2 ‖Y −median (PY )‖−2

E ‖Y −median (PY )‖−1 ≤ C

for an absolute constant C.



Equivalence of negative moments of the norm

Given an absolutely continuous random vector/variable X with density pX , let

M(X) := ‖pX‖∞

Lemma (S.M., N. Strawn ‘23)

Assume that Y ∈ Rd is given by a linear transformation

Y = AZ

where Z =
(
Z (1), . . . ,Z (k)

)
∈ Rk is a random vector with independent coordinates such that

ΣZ = Ik . Moreover, suppose that r(ΣY ) ≥ 4. Then

E1/2 ‖Y −median (PY )‖−2

E ‖Y −median (PY )‖−1 ≤ C max
j=1,...,k

M(Z (j))

for an absolute constant C.



Equivalence of negative moments of the norm

Given an absolutely continuous random vector/variable X with density pX , let

M(X) := ‖pX‖∞

Lemma (S.M., N. Strawn ‘23)

Let Y ∈ Rd , d ≥ 3 be a random vector with absolutely continuous distribution and covariance
matrix ΣY . Then

E1/2 ‖Y −median (PY )‖−2

E ‖Y −median (PY )‖−1 ≤ CM1/d
(

Σ
−1/2
Y Y

)√√√√√
∑d

j=1 λj

d
(∏d

i=1 λi

)1/d

for an absolute constant C, where λ1 ≥ . . . ≥ λd are the eigenvalues of ΣY .
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Lemma (S.M., N. Strawn ‘23)

Let Y ∈ Rd , d ≥ 3 be a random vector with absolutely continuous distribution and covariance
matrix ΣY . Then

E1/2 ‖Y −median (PY )‖−2

E ‖Y −median (PY )‖−1 ≤ CM1/d
(

Σ
−1/2
Y Y

)√√√√√
∑d

j=1 λj

d
(∏d

i=1 λi

)1/d

for an absolute constant C, where λ1 ≥ . . . ≥ λd are the eigenvalues of ΣY .

For example, if λj = C
jα for α < 1, then

∑d
j=1 λj

d
(∏d

i=1 λi

)1/d
≤ C(α).

Extensions to “perturbations” of distributions with nice covariance structrures.



Main results
 

Stochastic error: key observation is that

∥∥∥µ̃N −median
(

Φ̃m

)∥∥∥ .

√
tr(Σ)k

N

∥∥∥∥∥∥ 1
k

k∑
j=1

X̄j −m
‖X̄j −m‖

∥∥∥∥∥∥



Main results

Theorem (M., N. Strawn)

Assume that Y ∈ Rd has “nice” heavy-tailed distribution P. Then

‖µ̃N − µ‖ ≤ CP

(√
tr(Σ)

N
+
√
‖Σ‖

√
k
N

)

with probability at least 1− e−
√

k .



Some open questions

Are there natural classes of heavy-tailed distributions for which the geometric median of
means achieves sub-Gaussian performance?

Can one construct multivariate robust mean estimators with “optimal” constants?


