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e A matches first k — 1 moments with N(0,1).
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How many samples are needed to distinguish N(0,1d,) from a
planted distribution D?

e D=AxN(0,Id,—1),., v unknown
e A matches first k — 1 moments with N(0,1).
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(o] Jelele]

Non-Gaussian Component Analysis

How many samples are needed to distinguish N(0,Id,) from a
planted distribution D7

e D=AxN(0,Ids—1),:, v unknown
e A matches first k — 1 moments with N(0,1).

Under mild conditions, information-theoretically O(n).
o Statistical Query: > n®k)  [Diakonikolas-Kane-Stewart 17]
e Spectral (k-tensor): < nk/? [Dudeja-Hsu 20]

e Sum-of-Squares?
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Problem Formulation

Given m i.i.d. samples ~ N(0,Id,), can SoS efficiently rule out the
existence of v?
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Degree-d SoS

Given input x1, ..., Xm ~ N(0,Id,), run an SDP.
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Sum-of-Squares Relaxation

Degree-d SoS

Given input x1, ..., Xxm ~ N(0,Id,), run an SDP.
e Variables {Vil ey iAoy < d)

n
(formal names, no relation)

e Constraints
@ Match statistics of A

" Hei({xu,v) ~E[He]| < oA(%), vi<d

@ Positivity p?(v) > 0 for all low degree polynomial p.

; 152 _ 11
© Booleaness (optional) v'vi = v
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Sum-of-Squares Relaxation

e To show lower bounds, given x1, ..., xm, we find a feasible
solution B
E:{v'} =R

e We need to consider arbitrary xi, ..., xn. Pseudo-calibration
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Designing E

Idea:
@ Let E(v') be low-degree polynomial in X.

EGV)y= Y . He(X)

aeN™: low

He,(X) = [ Hea, ;(xu,i) Hermite polynomials.
u,i ,
Hey(z) =
He,(z) = =,
Hey(z) = 2% — 1,
Hes(z) = z° — 3z,
Hey(z) = z* — 62% + 3,
Hes () = 2° — 102% + 15z,
Heg(z) = 2° — 150 + 452? — 15,
Her(z) = 2" — 212® + 1052 — 105z,
Hes(z) = z® — 282% + 210z — 42022 + 105,
Heg(z) = 2° — 3627 + 3782° — 12602° + 945z,
)=

Heyy(z — 452® + 6302° — 31502" + 47252 — 945.
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Idea:
O Let E(VI) be low-degree polynomial in x.

EG)y= Y c. He(%)

aceN™: |ow

@ Choose coefficients by pseudo-calibration.
[Barak-Hopkins-Kelner-Kothari-Moitra-Potechin 16]
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Designing E

Idea:
O Let E(VI) be low-degree polynomial in x.

EG)y= Y c. He(%)

aceN™: |ow

@ Choose coefficients by pseudo-calibration.
[Barak-Hopkins-Kelner-Kothari-Moitra-Potechin 16]

Cj,» 1 = average correlation over planted cases

= E (v, Hesx))
VN{Q}n
NG
XNDV’A
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degree +/log n pseudo-calibration is a feasible solution.
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@ Non-singular
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Our result

Under mild conditions on A,

Theorem (SoS Lower Bounds for NGCA)

W.p. 1 — 0,(1) over m = n(1=9k/2 many samples from N(0,1d,),
degree +/log n pseudo-calibration is a feasible solution.

A matches kK — 1 moments and 3C > 0 s.t.
© Moment Bounds |E [Hei]| < (logn)¢ for all i < /log n.
A

@ Non-singular
E[q?] > (log n)~€V'°e" Vq : deg < \/log n, o-unit in N(0,1).
A
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Our Result

In other words, degree v/Tog n SoS algorithms require n(1=<)k/2
samples to solve NGCA.

e Almost tight, matching n*/2 [Dudeja-Hsu 22]
e Super-constant degree
e Applications:

Robust mean estimation

List-decodable mean estimation

Robust covariance estimation (additive, multiplicative)
Learning k-mixed Gaussians (k > 2)

Noisy planted planes [GJJPR 21]
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Rest of talk:
e m=n1=9% and E[He] =0, Vi € [1,k — 1].
A

e positivity constraints
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Our Goal

e Positivity < moment matrix M is PSD

M(1,J) = E(v'*Y), 1,J ¢ (_ ("] )

~ Uil taly 1 0
EG'") = Z n- 1 <H E [HEHa ||1]> He,,
ae(N™)™: low, =1 A
some more conditions

where al ;=[] a, ;!
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Our Goal

e Positivity < moment matrix M is PSD

M(1,J) = E(v'H), /’J€< [] >

< dsos

m Entries of M are low-deg in x, ; (u for sample, i for coordinate)
m Invariant under §,, x §,

m Tool: Graph matrices
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Graph Matrices [Medarametla-Potechin 16, Ahn-M-P 20]

Graph matrices {M,,}

e A basis of such matrix functions. (low-deg, “graph-theoretic")
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Graph Matrices [Medarametla-Potechin 16, Ahn-M-P 20]

Graph matrices {M,}

e A basis of such matrix functions.

Definition (Shape)

A shape a = (V(«a), E(e)) is a edge-weighted graph, plus two
“sides” Uy, Vq.

A shape «
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Graph Matrices [Medarametla-Potechin 16, Ahn-M-P 20]

Graph matrices {M,}

e A basis of such matrix functions.

e Shapes can be realized on [N]. Realization R gives matrix Mg.
Vr

o M, = > Mpg.

realization of «

Ur
H Fourier,,(¢)(xe)

ecE(R)|
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For NGCA [GJJPR 21]

o He:(x,;): bipartite shapes, edge {(@),[i]} of weight t.
(u € [m],i€[n])
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For NGCA [GJJPR 21]

o He:(x,;): bipartite shapes, edge {(@),[i]} of weight t.

(u e [m],ie[n])

N/
Mr ({21311, {B1[4]}) = Hes(x1.1) - Her(xa.2) - Hea(x1.4)
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Norm Bounds

Theorem [Ahn-Medarametla-Potechin 20]

W.h.p. over X, simultaneously for all small shapes a:

Mol S n™ 7o),

e w(d) =1, w(Q) = log,, m.

e Sin: minimum weight vertex separator.
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Norm Bounds

Theorem [Ahn-Medarametla-Potechin 20]

W.h.p. over X, simultaneously for all small shapes «a:
w(V)—=w(Smin)
Mol S n— 2 e,

e w(d) =1, w(Q) = log, m.

e S.in: minimum weight vertex separator.
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Norm Bounds

Theorem [Ahn-Medarametla-Potechin 20]

W.h.p. over X, simultaneously for all small shapes «:
w(V)=w(Smin)
IMall S n— 2o,

e w(O) =1, w(O) = log, m.

e S.in: minimum weight vertex separator.

Takeaway: ||M,|| is determined by w (V) — w(Smin).
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Analyzing Moment Matrix

M = Z (Hermite coefficient) - (Scaling coefficient) - M,
a: small, ~~
r condition —w(E(a))/2
other conditions § lc_i{deIE [Hedega(v)] n—w(E(a))/

T we)

ecE(a)
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Analyzing Moment Matrix

M = Z (Hermite coefficient) - (Scaling coefficient) -M,,
o: small, ~~ ~~
other conditions E |He S an(E(a))/2
B [Heueg, ()]
I[ w(e)!
ecE(a)

First step. Factorize M =~ LQLT.
[BHKKMP16, PR20, JPRTX21, P21, JPRX23]
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o Key: use vertex separator to decompose shapes
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Factorize M ~ LQL"

¢ Intuition: shape composition «~s matrix product

Goesto L Goes to Goesto LT

o Key: use vertex separator to decompose shapes

e We use minimum square-vertex separators.
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Factorization with Minimum Square Separators

Factorization Lemma

We have M ~ LQL", where L is okayish-conditioned, and

Q = Qumain + 1 ¢, Qmain is sum of special shapes.
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Special shapes

Simple spider disjoint unions

Simple spider §(3,2; 1)

A simple spider disjoint union
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Qmain contains a whole family of non-constant, equally dominant
shapes.

e Simple spider disjoint unions
e With recursive coefficients (involving products of E[He;])
A
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Many Dominant Terms

Goal: prove Quain is positive-definite
In all previous works, it's a constant matrix.

Challenge

Qmain contains a whole family of non-constant, equally dominant
shapes.

e Simple spider disjoint unions

e With recursive coefficients (involving products of E[He;])
A

Idea: study multiplicative structure of them
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Algebra of Simple Spiders

Sy := (scaled M,,) = n— z M,,.

Simple Spider Algebra (SA)

Basis: simple spiders with side size < d.

Multiplication *: includes only simple spiders in S, - Sg, with
idealized coefficients.
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Algebra of Simple Spiders

S, := (scaled M,) = n~ 2" M,,.

Simple Spider Algebra (SA)
Basis: simple spiders with side size < d.

Multiplication x: includes only simple spiders in S, - Sg, with
idealized coefficients.

1
5 5@22,1)+9-5(33;0)

S(2,2;1) *S(2,2;1)
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Algebra of Simple Spiders

S, = (scaled My) =n"z2  M,.

Simple Spider Algebra (SA)

Basis: simple spiders with side size < d.

Multiplication x: includes only simple spiders in S, - Sg, with
idealized coefficients.

Disjoint Union Algebra (SAgisj)

On simple spider disjoint unions. *}: well-behaved product.
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Algebra of Simple Spiders

o ol i
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Algebra of Simple Spiders

Basic Properties

e (Associativity) Both are associative R-algebras.
e (Compatibility) If restrict x4, to simple spiders, we get *.
e (Approximation)

|Sa - Sg — Sa *wb Sg|| < n”€

assuming all circles have > k legs to each side.
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Algebra of Simple Spiders

Basic Properties

¢ (Associativity) Both are associative R-algebras.

e (Compatibility) If restrict 3, to simple spiders, we get *.
e (Approximation)
S - SB — Sa *wh Sﬂ” <n*

assuming all circles have > k legs to each side.

Using these algebras, we can nail down Qmain-
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Determining Qumain

Lemma

Qmain is uniquely determined by
L #yb Quain *wb LT = P. (L, P explicit) (1)

Moreover,
L% Quain * LT = Pss. (2)

L and P look like this:

Z ( H IE[Hedeg(v)]) : Sa

. Lo . v: circle vertex
simple spider disjoint union
with certain conditions
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Determining Qumain

L and P look like this:

Z ( H IE:'[Hedeg(v)]) : Soz
v: circle vertex A

a:
simple spider disjoint union
with certain conditions

Some terms:

+ EA[H66] '% + EA[H€4_] .

+ E4[Hey] - Eq[Hes] - + .
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Determining Qumain

Lemma

Qmain is uniquely determined by

L #yb Qmain *wb L' = P. (L, P explicit) (1)

Moreover,
L * Quain * LT = Pss. (2)

The proof relies on intricate error analysis.
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PSDness in simple spider world — disjoint unions — real world
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Proving PSDness

L *wb Qmain *wb LT =P = Qmain =0

Proof Overview

PSDness in simple spider world — disjoint unions — real world

@ Show that Pss = axa'.

@ Show that Quain = b *wh, b .

(8) Qmain%b'b—r}()-
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Proving PSDness

L *wb Qmain *wb LT =P = Qmain =0

Proof Overview

PSDness in simple spider world — disjoint unions — real world

@ Show that Psg =axa'.

m Using representation

@ Show that Quain = b *wp, b .

(8) Qmain%b'b—r}()-
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Ferdinand Frobenius William Brunside Issai Schur Richard Brauer
1849-1917 1852 - 1937 1875-1941 1901-1977
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Simple Spider Algebra

Basis {S(kl, ko; u) | ki + u ko + u < d}.

Structural Constants

S(ki —u ko —u;u) * S(ka — v, k3 — v;v) =
min{u,v} ) )
(2B (ko + i — u— V) - S(ky — i, ks — i3 i)

ki—u) \ks—v
i=max{0,u+v—ky}
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Simple Spider Algebra

Basis {S(k1, ko; u) | ki + u, ko + u < d}.

Structural Constants

S(ki —u, ko —u;u) % S(ko — v, k3 — v;v) =
min{u,v} ) )
(=) (=) J(ko + i — u— V)1 - S(ky — i, ks — i i)

ki—u) \ks—v
i=max{0,u+v—ky}

¢ Representation: homomorphism to a matrix algebra.
e We will construct p : SA — My ... (q4+1)(R).
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Simple Spider Algebra

e Representation: homomorphism to a matrix algebra.
e We will construct p : SA — My .4 (g11)(R).

3(0,0)

=)
T
=N
e

B(2,1) B(2,2

Block structure for Mg (R)
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Representation

Definition (Representation p)

p:SA— My 1(4+1)(R) maps each S(ky — t, ko — t; t) to a
matrix supported on block (ki, ka), where nonzero entries appear
“diagonally bottom-up”:
i
(kl = t)!(kz = t)!(t = (kl = I))I

ifj—i=ks— ky.
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Representation

Definition (Representation p)

p:SA— My 1(4+1)(R) maps each S(ky — t, ko — t; t) to a
matrix supported on block (ki, ka), where nonzero entries appear
“diagonally bottom-up”:

iyl .
(k1 — )1 (ko — ) (£ — (kn — 0))! #i—i=k—h
*|0 %0 0 =
O/« 0|0 % O
Im(p) *10 %[0 0 =«
0/0 0|« 0 O
O/« 0/0 % O
*10 %[0 0 =«
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Representation

Definition (Representation p)
p:SA— My i (4+1)(R) maps each S(ky — t, ko — t; t) to a

matrix supported on block (ki, kz), where nonzero entries appear
“diagonally bottom-up”:
Vil
(kl = t)!(kz = t)!(t = (kl = I))I

The linear extension of p is an algebra isomorphism SA = Im(p).

ifj— i = ko — ki.




PSDness via Representation
000000000800

Example

Simple spiders with equal #legs to sides: commutative subalgebra
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Example

Simple spiders with equal #legs to sides: commutative subalgebra

e Fixing side-size s.

N w
Il

Sy x S3

S3

S3 %S,
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Example

Simple spiders with equal #legs to sides: commutative subalgebra

e Fixing side-size s.

e Elements are linear combinations a = Y a; - §;,
i<s

a2 00

(J's): 0




PSDness via Representation
000000000800

Example

Simple spiders with equal #legs to sides: commutative subalgebra

e Fixing side-size s.

e Elements are linear combinations a = )" a; - S,
i<s

e % ﬂC)(:iJ)Jaj'(?)‘

(') 05/ <i<j

What does this formula look like?
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Example

Simple spiders with equal #legs to sides: commutative subalgebra

e Fixing side-size s.

e Elements are linear combinations a = )" a; - S,
i<s

! gy o5 sicyay SN I U!

Uy

e Take symmetric function on {0,1}*:

fri= > “lx then fy - fy = fuup
/c{01}s| i
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Example

Simple spiders with equal #legs to sides: commutative subalgebra

e Fixing side-size s.

e Elements are linear combinations a = ) a; - §;,

i<s
(axb)i Z i J aj bjr
n —__. N/ Ni=7) 0 ()
(J"): 0<jj' <i<j+j!
e Take symmetric function on {0,1}*:
4|/
fo= > #xl, then - fi = fors

1c{0,1}s

e ais sum-of-squares in SA < f, is point-wise nonnegative
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Example

Simple spiders with equal #legs to sides: commutative subalgebra

e Fixing side-size s.

Elements are linear combinations a = > a; - §;,
i<s

! '): 0<) ' Si<jH" =i 0

U

Take symmetric function on {0,1}*:

fri= > “lx then £, - o = furp
/c{01}s| i

a is sum-of-squares in SA & f, is point-wise nonnegative

f values are diagonals of p.
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PSDness via Representation

Lemma (Structure of p)

0 Im(p) = @ M1 (R).

i=0

ol e

O Oje O e
o O e
O Oje O e

o o X|o o|o
o > oo Pp>|o

o D> oo pD|o
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PSDness via Representation

Lemma (Structure of p)

0 Im(p) = b Miya(®)

i=0
@ p(XT)=p(X)T forall X € SA.
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PSDness via Representation

Lemma (Structure of p)
0 Im(p) = @ Mia(R).
i=0

@ p(XT) = p(X)T for all X € SA.

d

Iltem 1: p “contains all irreducible representations” of SA.
(Wedderburn-Artin reified)

Item 2: X € SA is a sum-of-squares iff p(X) is PSD.
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PSDness via Representation

Lemma (Structure of p)
d
© m(r) = G M (R).
@ p(XT)=p(X)T forall X € SA.

Target P under p(-):
Lemma (PSDness)

d
r(P)=¢

P;, each P; a leading principal minor of Py, and
i=0

Py = Z@A[v(z) . v(z)T] where v(z) = (Hep(2), . .., Heq(2)) .
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PSDness via Representation

Lemma (Structure of p)

d
© im(r) =  Ma(®)
@ p(XT)=p(X)T forall X € SA.

Target P under p(-):

Lemma (PSDness)

d
p(P) = @ P;, each P; a leading principal minor of Py, and
i=0

Py = Z@A[v(z) -v(z) "] where v(z) = (Hey(2), . . ., Heq(2)) .

Proof boils down to Hermite multiplication formula.
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Lift to True PSDness

@ Using p back-and-forth, it's not too hard to show

(Qmain)ss = ax aT, a € SA.
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Lift to True PSDness

@ Using p back-and-forth, it's not too hard to show

(Qmain)ss = ax aT, a € SA.

@ Lift to disjoint unions: d-combination operator [']d
[X*}/]d = [X]d *wh ([}’]d)T for special x, y.

From here,

Quain = [ *wp, ([2]9) T ~ [a]7 - ([a]9) "
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Lift to True PSDness

@ Using p back-and-forth, it's not too hard to show

(Qmain)ss = ax aT, a € SA.

@ Lift to disjoint unions: d-combination operator [']d
[X*}/]d = [X]d *wh ([}’]d)T for special x, y.
From here,

Quain = [ *wp, ([2]9) T ~ [a]7 - ([a]9) "

© [a] is sufficiently non-singular.

[]¢ operator: combinatorial construction
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Error Analysis: Highlights

e Error analysis is needed throughout the proof.
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Error Analysis: Highlights

e Error analysis is needed throughout the proof.

e Advanced charging argument in a systematic language.
For norm estimates in sequential matrix multiplication.

e Interplay between min-square and min-weight separators.
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Summary

e We prove SoS lower bounds for Non-Gaussian Component
Analysis, an important problem.

e This closes the gap between statistical query/low-degree
polynomial lower bounds and SoS lower bounds for NGCA,
giving further evidence for the low-degree conjecture.

e The SoS lower bound problem presents intrinsic challenges. We
introduce algebro-combinatorial techniques to address them.

Thank you
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