1/10 → 1/35 → 1/35 → 1/35 → 1/35 → 1/35

Sum-of-Squares Lower Bounds for Non-Gaussian Component Analysis Challenges and New Techniques

Shuo Pang

University of Copenhagen

TTIC, June 14, 2024

2/35

With Ilias Diakonikolas, Sushrut Karmalkar, and Aaron Potechin

Outline

1 [Problem Formulation](#page-2-0)

2 [Pseudo-Calibration](#page-16-0)

3 [PSDness via Representation](#page-47-0)

4 [Error Analysis](#page-86-0)

4 ロ → 4 @ ▶ 4 블 → 4 블 → 1 를 → 9 Q O + 3/35

4/그 ▶ 4/급 ▶ 4/글 ▶ 4/글 ▶ 그들 → 9/3/0 + 4/35

Non-Gaussian Component Analysis

How many samples are needed to distinguish $N(0, \mathrm{Id}_n)$ from a planted distribution D?

- $D = A \times N(0, \mathrm{Id}_{n-1})_{\vee^{\perp}}$, v unknown
- A matches first $k-1$ moments with $N(0, 1)$.

Non-Gaussian Component Analysis

How many samples are needed to distinguish $N(0, \mathrm{Id}_n)$ from a planted distribution D?

- $D = A \times N(0, \mathrm{Id}_{n-1})_{n}$, v unknown
- A matches first $k 1$ moments with $N(0, 1)$.

Non-Gaussian Component Analysis

How many samples are needed to distinguish $N(0, \mathrm{Id}_n)$ from a planted distribution D?

- $D = A \times N(0, \mathrm{Id}_{n-1})_{n}$, v unknown
- A matches first $k-1$ moments with $N(0, 1)$.

Under mild conditions, information-theoretically $O(n)$.

- Statistical Query: $\geq n^{\Omega(k)}$ [Diakonikolas-Kane-Stewart 17]
- Spectral (*k*-tensor): $\leq n^{k/2}$ [Dudeja-Hsu 20]

Non-Gaussian Component Analysis

How many samples are needed to distinguish $N(0, \mathrm{Id}_n)$ from a planted distribution D?

- $D = A \times N(0, \mathrm{Id}_{n-1})_{n \perp}$, v unknown
- A matches first $k 1$ moments with $N(0, 1)$.

Under mild conditions, information-theoretically $O(n)$.

- Statistical Query: $\geq n^{\Omega(k)}$ [Diakonikolas-Kane-Stewart 17]
- Spectral (*k*-tensor): $\leq n^{k/2}$ [Dudeja-Hsu 20]
- Sum-of-Squares?

[Problem Formulation](#page-2-0)
 [PSDness via Representation](#page-47-0) PSDness via Representation [Error Analysis](#page-86-0)
 Problem Formulation PSD DOO POOD DOO POOD POOD DOO POOD DOO

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q O + 5/35

Problem Formulation

Given *m* i.i.d. samples $\sim N(0, \text{Id}_n)$, can SoS efficiently rule out the existence of v ?

Sum-of-Squares Relaxation

Degree-d SoS

Given input $x_1, \ldots, x_m \sim N(0, \mathrm{Id}_n)$, run an SDP.

4 ロ → 4 @ ▶ 4 블 → 4 블 → 1 를 → 9 Q Q + 6/35

Sum-of-Squares Relaxation

Degree-d SoS

Given input $x_1, \ldots, x_m \sim N(0, \mathrm{Id}_n)$, run an SDP.

• Variables $i_1^{i_1} \cdots v_n^{i_n} : i_1 + \cdots + i_n \leq d$

(formal names, no relation)

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q O + 6/35

Sum-of-Squares Relaxation

Degree-d SoS

Given input $x_1, \ldots, x_m \sim N(0, \mathrm{Id}_n)$, run an SDP.

• Variables $i_1^{i_1} \cdots v_n^{i_n} : i_1 + \cdots + i_n \leq d$

(formal names, no relation)

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q O + 6/35

- Constraints
	- \bullet Match statistics of A

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q O + 6/35

Sum-of-Squares Relaxation

Degree-d SoS

Given input $x_1, \ldots, x_m \sim N(0, \mathrm{Id}_n)$, run an SDP.

- Variables $i_1^{i_1} \cdots v_n^{i_n} : i_1 + \cdots + i_n \leq d$ (formal names, no relation)
- Constraints

D Match statistics of *A*

$$
\left| \frac{1}{m} \sum_{u=1}^{m} He_i(\langle x_u, v \rangle) - \mathbb{E}[He_i] \right| \leq O_A(\frac{1}{\sqrt{m}}), \quad \forall i \leq d
$$

Positivity

3 Booleaness (optional)

Sum-of-Squares Relaxation

Degree-d SoS

Given input $x_1, \ldots, x_m \sim N(0, \mathrm{Id}_n)$, run an SDP.

- **variables** $i_1^{i_1} \cdots v_n^{i_n} : i_1 + \cdots + i_n \leq d$ (formal names, no relation)
- Constraints

D Match statistics of A\n
$$
\left|\frac{1}{m}\sum_{u=1}^m He_i(\langle x_u, v \rangle) - \mathbb{E}[He_i]\right| \leq O_A(\frac{1}{\sqrt{m}}), \quad \forall i \leq d
$$

 ${\bf 2}$ Positivity $\quad \rho^2({\rm v}) \geq 0$ for all low degree polynomial $\rho.$

3 Booleaness (optional)

Sum-of-Squares Relaxation

Degree-d SoS

Given input $x_1, \ldots, x_m \sim N(0, \mathrm{Id}_n)$, run an SDP.

- Variables $i_1^{i_1} \cdots v_n^{i_n} : i_1 + \cdots + i_n \leq d$ (formal names, no relation)
- Constraints

D Match statistics of *A*

$$
\left| \frac{1}{m} \sum_{u=1}^{m} He_i(\langle x_u, v \rangle) - \mathbb{E}[He_i] \right| \leq O_A(\frac{1}{\sqrt{m}}), \quad \forall i \leq d
$$

 ${\bf 2}$ Positivity $\quad \rho^2({\rm v}) \geq 0$ for all low degree polynomial $\rho.$

3 Booleaness (optional) $v^I v_i^2 = \frac{1}{n} v^I$

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q O + 7/35

Sum-of-Squares Relaxation

• To show lower bounds, given x_1, \ldots, x_m , we find a feasible solution

 $\widetilde{E}: \{v'\} \to \mathbb{R}.$

• We need to consider arbitrary x_1, \ldots, x_m .

[Problem Formulation](#page-2-0)
 [PSDness via Representation](#page-47-0) [Error Analysis](#page-86-0)
 Problem Formulation Process process

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q O + 7/35

Sum-of-Squares Relaxation

• To show lower bounds, given x_1, \ldots, x_m , we find a feasible solution

$$
\widetilde{E}: \{v'\} \to \mathbb{R}.
$$

• We need to consider arbitrary x_1, \ldots, x_m . Pseudo-calibration

Outline

[Problem Formulation](#page-2-0)

2 [Pseudo-Calibration](#page-16-0)

3 [PSDness via Representation](#page-47-0)

4 [Error Analysis](#page-86-0)

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 블 ▶ - 블 - 외 9 Q Q - 8/35

Designing \widetilde{E}

Idea:

D Let $E(v^l)$ be **low-degree polynomial** in \vec{x} .

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q Q → 9/35

Designing E

Idea:

D Let $E(v^l)$ be **low-degree polynomial** in \vec{x} .

$$
\widetilde{E}(v') = \sum_{a \in \mathbb{N}^{mn}: \text{ low}} c_{I,a} \cdot He_a(\vec{x})
$$

 $He_a(\vec{x}) = \prod$ $\prod\limits_{u,i} H e_{a_{u,i}}(x_{u,i})$ Hermite polynomials.

Designing E

Idea:

D Let $E(v^l)$ be **low-degree polynomial** in \vec{x} .

$$
\widetilde{E}(v') = \sum_{a \in \mathbb{N}^{mn}: \text{ low}} c_{I,a} \cdot He_a(\vec{x})
$$

 $He_a(\vec{x}) = \prod$ $\prod\limits_{u,i} H e_{a_{u,i}}(x_{u,i})$ Hermite polynomials.

$$
\begin{aligned} &He_0(x)=1,\\ &He_1(x)=x,\\ &He_2(x)=x^2-1,\\ &He_3(x)=x^3-3x,\\ &He_4(x)=x^4-6x^2+3,\\ &He_6(x)=x^5-10x^3+15x,\\ &He_6(x)=x^6-15x^4+45x^2-15,\\ &He_7(x)=x^7-21x^5+105x^3-105x,\\ &He_8(x)=x^8-28x^6+210x^4-420x^2+105,\\ &He_9(x)=x^9-36x^7+378x^5-1260x^3+945x,\\ &He_{10}(x)=x^{10}-45x^8+630x^6-3150x^4+4725x^2-945. \quad\text{and}\quad\text{and
$$

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q Q → 9/35

Designing E

Idea:

D Let $E(v^l)$ be **low-degree polynomial** in \vec{x} .

$$
\widetilde{E}(v') = \sum_{a \in \mathbb{N}^{mn}: \text{ low}} c_{I,a} \cdot He_a(\vec{x})
$$

² Choose coefficients by pseudo-calibration. [Barak-Hopkins-Kelner-Kothari-Moitra-Potechin 16]

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q Q → 9/35

Designing E

Idea:

D Let $E(v^l)$ be **low-degree polynomial** in \vec{x} .

$$
\widetilde{E}(v') = \sum_{a \in \mathbb{N}^{mn}: \text{ low}} c_{I,a} \cdot He_a(\vec{x})
$$

2 Choose coefficients by **pseudo-calibration**. [Barak-Hopkins-Kelner-Kothari-Moitra-Potechin 16]

 $c_{i,a}$: = average correlation over planted cases

$$
=\mathop{\mathbb{E}}\limits_{\substack{V\sim \{\frac{\pm 1}{\sqrt{n}}\}^n\\x\sim \mathcal{D}_{V,A}}} \langle V^I,He_a(x)\rangle
$$

10 → 1日 → 1월 → 1월 → 1월 → 990 10/35

Our result

Under mild conditions on A,

Theorem (SoS Lower Bounds for NGCA)

W.p. $1 - o_n(1)$ over $m = n^{(1-\epsilon)k/2}$ many samples from $N(0, \text{Id}_n)$, $\frac{\partial v}{\partial p}$. $1 - \frac{\partial v}{\partial q}$ for $m = n$. Then $\frac{\partial v}{\partial q}$ is a steasible solution.

10 → 1日 → 1월 → 1월 → 1월 → 990 10/35

Our result

Under mild conditions on A,

Theorem (SoS Lower Bounds for NGCA)

W.p. $1 - o_n(1)$ over $m = n^{(1-\epsilon)k/2}$ many samples from $N(0, \text{Id}_n)$, $\frac{\partial v}{\partial p}$. $1 - \frac{\partial v}{\partial q}$ for $m = n$. Then $\frac{\partial v}{\partial q}$ is a steasible solution.

Conditions on A

A matches $k - 1$ moments and $\exists C > 0$ s.t.

- **4** Moment Bounds
- **2** Non-singular

10 → 1日 → 1월 → 1월 → 1월 → 990 10/35

Our result

Under mild conditions on A,

Theorem (SoS Lower Bounds for NGCA)

W.p. $1 - o_n(1)$ over $m = n^{(1-\epsilon)k/2}$ many samples from $N(0, \text{Id}_n)$, $\frac{\partial v}{\partial p}$. $1 - \frac{\partial v}{\partial q}$ for $m = n$. Then $\frac{\partial v}{\partial q}$ is a steasible solution.

Conditions on A

A matches $k - 1$ moments and $\exists C > 0$ s.t.

- **1** Moment Bounds $\left| \frac{\mathbb{E}}{A} [He_i] \right| \leq (\log n)^{C \cdot i}$ for all $i \leq$ √ $log n$.
- **2** Non-singular

Our result

Under mild conditions on A,

Theorem (SoS Lower Bounds for NGCA)

W.p. $1 - o_n(1)$ over $m = n^{(1-\epsilon)k/2}$ many samples from $N(0, \text{Id}_n)$, $\frac{\partial v}{\partial p}$. $1 - \frac{\partial v}{\partial q}$ for $m = n$. Thany samples not
degree $\sqrt{\log n}$ pseudo-calibration is a feasible solution.

Conditions on A

A matches $k - 1$ moments and $\exists C > 0$ s.t.

- **1** Moment Bounds $\left| \frac{\mathbb{E}}{A} [He_i] \right| \leq (\log n)^{C \cdot i}$ for all $i \leq$ √ $log n$.
- **2** Non-singular E Non-singular $\mathbb{E}[q^2] \ge (\log n)^{-C\sqrt{\log n}}, \ \forall q : \text{deg} \le$ √ $\overline{\log n}$, ℓ_2 -unit in $N(0,1)$.

Our Result

In other words, degree $\sqrt{\log n}$ SoS algorithms require $n^{(1-\epsilon)k/2}$ samples to solve NGCA.

11/35

Our Result

In other words, degree $\sqrt{\log n}$ SoS algorithms require $n^{(1-\epsilon)k/2}$ samples to solve NGCA.

- Almost tight, matching $n^{k/2}$ [Dudeja-Hsu 22]
- Super-constant degree
- Applications:

...

```
Robust mean estimation
List-decodable mean estimation
Robust covariance estimation (additive, multiplicative)
Learning k-mixed Gaussians (k > 2)Noisy planted planes [GJJPR 21]
```
10 → 1日 → 1월 → 1월 → 1월 → 990 12/35

Rest of talk:

- $m = n^{(1-\epsilon)k}$, and $\mathbb{E}[He_i] = 0$, $\forall i \in [1, k-1]$.
- positivity constraints

10 H (日) (정 H (정 H (정 H) 정 국 (전 30 M) 13/35

• Positivity \Leftrightarrow moment matrix *M* is PSD

$$
M(I, J) := \widetilde{E}(v^{I+J}), \quad I, J \in \binom{[n]}{\leq d_{S \circ S}}
$$

Our Goal

• Positivity \Leftrightarrow moment matrix *M* is PSD

$$
M(I,J):=\widetilde{E}(v^{I+J}),\ \ I,J\in\binom{[n]}{\leq d_{SoS}}
$$

where

$$
\widetilde{E}(v') = \sum_{\substack{a \in (\mathbb{N}^n)^m : \text{ low,} \\ \text{some more conditions}}} n^{-\frac{\|I\|_1 + \|a\|_1}{2}} \frac{1}{a!} \left(\prod_{u=1}^m \mathbb{E} \left[H e_{\|a_u\|_1} \right] \right) H e_a,
$$

where $a! := \prod$ u,i $a_{u,i}!$.

10 H (日) (정 H (정 H (정 H) 정 국 (전 30 M) 13/35

10 H (日) (정 H (정 H (정 H) 정 국 (전 30 M) 13/35

Our Goal

• Positivity \Leftrightarrow moment matrix M is PSD

$$
M(I,J):=\widetilde{E}(v^{I+J}),\ \ I,J\in\binom{[n]}{\leq d_{SoS}}
$$

Entries of M are low-deg in $x_{u,i}$ (u for sample, i for coordinate) **Invariant under** $S_m \times S_n$

Tool: Graph matrices

14/35

Graph Matrices [Medarametla-Potechin 16, Ahn-M-P 20]

Graph matrices $\{M_{\alpha}\}\$

A basis of such matrix functions. (low-deg, "graph-theoretic")

Graph Matrices [Medarametla-Potechin 16, Ahn-M-P 20]

Graph matrices $\{M_{\alpha}\}\$

A basis of such matrix functions.

Definition (Shape)

A shape $\alpha = (V(\alpha), E(\alpha))$ is a edge-weighted graph, plus two "sides" U_{α} , V_{α} .

A shape α

10 → 1日 → 1월 → 1월 → 1월 → 990 14/35

Graph Matrices [Medarametla-Potechin 16, Ahn-M-P 20]

Graph matrices $\{M_{\alpha}\}\$

- A basis of such matrix functions.
- Shapes can be realized on $[N]$. Realization R gives matrix M_R .

1日 → 1日 → 1월 → 1월 → 1월 → 990 + 15/35

For NGCA [GJJPR 21]

• He_t($x_{u,i}$): bipartite shapes, edge $\{\widehat{u},\widehat{v}\}\}$ of weight t. $(u \in [m], i \in [n])$
For NGCA [GJJPR 21]

• He_t($x_{u,i}$): bipartite shapes, edge $\{(\widehat{u}), [\widehat{i}]\}$ of weight t. $(u \in [m], i \in [n])$

15/35 $M_R\Big(\{\boxed{2},\boxed{3}\},\{\boxed{3},\boxed{4}\}\Big) = H\overline{e_3}(x_{1,1})\cdot H\overline{e_1}(x_{1,2})\cdot H\overline{e_1}(x_{1,4})$

10 → 11日 → 11目 → 11目 → 11를 → 12,000 116/35

Norm Bounds

Theorem [Ahn-Medarametla-Potechin 20]

W.h.p. over \vec{x} , simultaneously for all small shapes α :

$$
\|M_{\alpha}\| \lesssim n^{\frac{w(V)-w(S_{min})}{2}+o(1)}.
$$

•
$$
w(\square) = 1, w(\bigcirc) = \log_n m.
$$

 \bullet S_{min} : minimum weight vertex separator.

Norm Bounds

Theorem [Ahn-Medarametla-Potechin 20]

W.h.p. over \vec{x} , simultaneously for all small shapes α :

$$
||M_{\alpha}|| \lesssim n^{\frac{w(V)-w(S_{min})}{2}+o(1)}.
$$

•
$$
w(\square) = 1, w(\bigcirc) = \log_n m.
$$

 \bullet S_{min} : minimum weight vertex separator.

Norm Bounds

Theorem [Ahn-Medarametla-Potechin 20]

W.h.p. over \vec{x} , simultaneously for all small shapes α :

$$
||M_{\alpha}|| \lesssim n^{\frac{w(V)-w(S_{min})}{2}+o(1)}.
$$

•
$$
w(\square) = 1
$$
, $w(\bigcirc) = \log_n m$.

 S_{min} : minimum weight vertex separator.

Takeaway: $||M_{\alpha}||$ is determined by $w(V) - w(S_{min})$.

10 → 11日 → 11目 → 11目 → 11를 → 12,000 116/35

10 H (日) (동) (동) 등 990 17/35

Analyzing Moment Matrix

Analyzing Moment Matrix

First step. Factorize $M \approx LQL$ ^T. [BHKKMP16, PR20, JPRTX21, P21, JPRX23]

10 → 11만 → 11만 → 11만 → 11만 + 12 → 20만 + 12 + 25

1日 → 1日 → 1월 → 1월 → 1월 → 990 + 18/35

Factorize M ≈ LQL[⊤]

• Intuition: shape composition \leftrightarrow matrix product

18/35

Factorize $M \approx \text{\textsf{LQL}}{}^{\top}$

• Intuition: shape composition \leftrightarrow matrix product

• Key: use vertex separator to decompose shapes

18/35

Factorize $M \approx \text{\textsf{LQL}}{}^{\top}$

• Intuition: shape composition \leftrightarrow matrix product

- Key: use vertex separator to decompose shapes
- We use minimum square-vertex separators.

10 → 1日→ 1월 → 1월 → 1월 → 19/35

Factorization with Minimum Square Separators

Factorization Lemma

We have $M \approx LQL$ ^T, where L is okayish-conditioned, and

 $Q = Q_{\text{main}} + n^{-\epsilon}$, Q_{main} is sum of special shapes.

Special shapes

Simple spider disjoint unions

Simple spider $S(3,2; 1)$

A simple spider disjoint union

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → - 로 → 9 Q Q + 20/35

[Problem Formulation](#page-2-0) **Problem Formulation**
 [PSDness via Representation](#page-47-0) [Error Analysis](#page-86-0)
 PSDness via Representation Proposition **PSDness via Representation** Proposition COO

Outline

[Problem Formulation](#page-2-0)

2 [Pseudo-Calibration](#page-16-0)

3 [PSDness via Representation](#page-47-0)

4 [Error Analysis](#page-86-0)

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → 21/35

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → 2 → 3 → 9 Q Q + 22/35

Many Dominant Terms

Goal: prove Q_{main} is positive-definite In all previous works, it's a constant matrix.

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ → 할 → 9 Q Q + 22/35

Many Dominant Terms

Goal: prove Q_{main} is positive-definite In all previous works, it's a constant matrix.

Challenge

 Q_{main} contains a whole family of non-constant, equally dominant shapes.

- Simple spider disjoint unions
- With recursive coefficients (involving products of $\mathbb{E}[He_i]$) A

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 9 Q 22/35

Many Dominant Terms

Goal: prove Q_{main} is positive-definite In all previous works, it's a constant matrix.

Challenge

 Q_{main} contains a whole family of non-constant, equally dominant shapes.

- Simple spider disjoint unions
- With recursive coefficients (involving products of $\mathbb{E}[He_i]$) A

Idea: study multiplicative structure of them

[Problem Formulation](#page-2-0) **Problem Formulation**
 [PSDness via Representation](#page-47-0) [Error Analysis](#page-86-0)
 PSDness via Representation Proposition COO COO COO COO COO COO

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ → 할 → 9 Q Q + 23/35

Algebra of Simple Spiders

$$
S_{\alpha} := (\text{scaled } M_{\alpha}) = n^{\frac{-w(E(\alpha))}{2}} M_{\alpha}.
$$

Simple Spider Algebra (SA)

Basis: simple spiders with side size $\leq d$.

Multiplication \star : includes only simple spiders in $S_\alpha \cdot S_\beta$, with idealized coefficients.

[Problem Formulation](#page-2-0) **Problem Formulation**
 [PSDness via Representation](#page-47-0) [Error Analysis](#page-86-0)
 PSDness via Representation Proposition COO COO COO COO COO COO

Algebra of Simple Spiders

$$
S_{\alpha} := (\text{scaled } M_{\alpha}) = n^{\frac{-w(E(\alpha))}{2}} M_{\alpha}.
$$

Simple Spider Algebra (SA)

Basis: simple spiders with side size $\leq d$.

Multiplication \star : includes only simple spiders in $S_\alpha \cdot S_\beta$, with idealized coefficients.

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ → 할 → 9 Q Q + 23/35

Algebra of Simple Spiders

$$
S_{\alpha} := (\text{scaled } M_{\alpha}) = n^{\frac{-w(E(\alpha))}{2}} M_{\alpha}.
$$

Simple Spider Algebra (SA)

Basis: simple spiders with side size $\leq d$.

Multiplication \star : includes only simple spiders in $S_\alpha \cdot S_\beta$, with idealized coefficients.

Disjoint Union Algebra (SA_{dis})

On simple spider disjoint unions. $*_{\text{wb}}$: well-behaved product.

Algebra of Simple Spiders

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → - ミ → 9 Q O + 24/35

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ → 할 → 9 Q Q + 24/35

Algebra of Simple Spiders

Basic Properties

- (Associativity) Both are associative \mathbb{R} -algebras.
- (Compatibility) If restrict $*_{\text{wb}}$ to simple spiders, we get \star .
- (Approximation)

$$
\|S_\alpha \cdot S_\beta - S_\alpha *_{\text{wb}} S_\beta\| \leq n^{-\epsilon}
$$

assuming all circles have $\geq k$ legs to each side.

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 Q Q - 24/35

Algebra of Simple Spiders

Basic Properties

- (Associativity) Both are associative \mathbb{R} -algebras.
- (Compatibility) If restrict $*_{\text{wb}}$ to simple spiders, we get \star .
- (Approximation)

$$
\|S_{\alpha}\cdot S_{\beta}-S_{\alpha}*_{\mathrm{wb}}S_{\beta}\|\leq n^{-\epsilon}
$$

assuming all circles have $\geq k$ legs to each side.

Using these algebras, we can nail down Q_{main} .

Determining Q_{main}

Lemma

 Q_{main} is uniquely determined by

$$
L *_{\text{wb}} Q_{\text{main}} *_{\text{wb}} L^{\top} = P. (L, P \text{ explicit})
$$
 (1)

Moreover,

$$
L \star Q_{\text{main}} \star L^{\top} = P_{\text{SS}}.\tag{2}
$$

 L and P look like this:

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 90 Q - 25/35

Determining Q_{main}

Determining Q_{main}

Lemma

 Q_{main} is uniquely determined by

$$
L *_{\text{wb}} Q_{\text{main}} *_{\text{wb}} L^{\top} = P. (L, P \text{ explicit})
$$
 (1)

Moreover,

$$
L \star Q_{\text{main}} \star L^{\top} = P_{\text{SS}}.\tag{2}
$$

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → 25 → 25 → 25 / 35

The proof relies on intricate error analysis.

4 ロ ▶ 4 @ ▶ 4 호 ▶ 4 호 ▶ → 호 → 9 9 0 26/35

Proving PSDness

$$
L *_{\text{wb}} Q_{\text{main}} *_{\text{wb}} L^{\top} = P \Rightarrow Q_{\text{main}} > 0
$$

4 ロ → 4 @ ▶ 4 로 → 4 로 → 2 로 → 9 Q Q + 26/35

Proving PSDness

$$
L *_{\text{wb}} Q_{\text{main}} *_{\text{wb}} L^{\top} = P \Rightarrow Q_{\text{main}} > 0
$$

Proof Overview

PSDness in simple spider world \rightarrow disjoint unions \rightarrow real world

4 ロ → 4 @ ▶ 4 로 → 4 로 → 2 로 → 9 Q Q + 26/35

Proving PSDness

$$
L *_{\text{wb}} Q_{\text{main}} *_{\text{wb}} L^{\top} = P \Rightarrow Q_{\text{main}} > 0
$$

Proof Overview

PSDness in simple spider world \rightarrow disjoint unions \rightarrow real world

1 Show that $P_{SS} = a \star a^{\top}$.

$$
\bullet \hskip 0.2cm \textbf{Show that } Q_{\text{main}} = b *_{\text{wb}} b^{\top}.
$$

$$
\bullet \ \ Q_{\text{main}} \approx b \cdot b^{\top} \succ 0.
$$

4 ロ → 4 @ → 4 할 → 4 할 → 1 할 → 9 Q O + 26/35

Proving PSDness

$$
L *_{\text{wb}} Q_{\text{main}} *_{\text{wb}} L^{\top} = P \Rightarrow Q_{\text{main}} > 0
$$

Proof Overview

PSDness in simple spider world \rightarrow disjoint unions \rightarrow real world

1 Show that $P_{SS} = a \star a^{\top}$.

Using representation

$$
\bullet\text{ Show that }Q_{\text{main}}=b\ast_{\text{wb}}b^\top.
$$

$$
\bullet \ \ Q_{\text{main}} \approx b \cdot b^{\top} \succ 0.
$$

Ferdinand Frobenius 1849 - 1917

William Brunside 1852 - 1937

Issai Schur $1875 - 1941$ **Richard Brauer** $1901 - 1977$

4 ロ ▶ 4 @ ▶ 4 호 ▶ 4 호 ▶ - 호 - ⊙ 9 Q 0 - 27/35

[Problem Formulation](#page-2-0) **Problem Formulation**
 [PSDness via Representation](#page-47-0) [Error Analysis](#page-86-0)
 PSDness via Representation Proposition COO COO COO COO COO COO COO

4 ロ ▶ 4 @ ▶ 4 호 ▶ 4 호 ▶ → 호 → 9 9 0 28/35

Simple Spider Algebra

Basis
$$
\{S(k_1, k_2; u) | k_1 + u, k_2 + u \le d\}.
$$

Structural Constants

$$
S(k_1 - u, k_2 - u; u) \star S(k_2 - v, k_3 - v; v) =
$$

\n
$$
\sum_{i = \max\{0, u+v-k_2\}}^{ \min\{u, v\}} {k_1 - u \choose k_1 - u} {k_3 - i \choose k_3 - v} / (k_2 + i - u - v)! \cdot S(k_1 - i, k_3 - i; i)
$$

[Problem Formulation](#page-2-0) **Problem Formulation**
 [PSDness via Representation](#page-47-0) [Error Analysis](#page-86-0)
 PSDness via Representation Proposition COO COO COO COO COO COO COO

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ → 할 → 9 Q Q + 28/35

Simple Spider Algebra

Basis
$$
\{S(k_1, k_2; u) | k_1 + u, k_2 + u \le d\}.
$$

Structural Constants

$$
S(k_1 - u, k_2 - u; u) \star S(k_2 - v, k_3 - v; v) =
$$

\n
$$
\sum_{i=\max\{0, u+v-k_2\}}^{m \in \{u,v\}} {k_1 - i \choose k_1 - u} {k_3 - i \choose k_3 - v} / (k_2 + i - u - v)! \cdot S(k_1 - i, k_3 - i; i)
$$

- Representation: homomorphism to a matrix algebra.
- We will construct $\rho : SA \to M_{1+\cdots+(d+1)}(\mathbb{R})$.

[Problem Formulation](#page-2-0) **Problem Formulation**
 [PSDness via Representation](#page-47-0) [Error Analysis](#page-86-0)
 PSDness via Representation Proposition COO COO COO COO COO COO COO

Simple Spider Algebra

- Representation: homomorphism to a matrix algebra.
- We will construct $\rho : SA \to M_{1+\cdots+(d+1)}(\mathbb{R})$.

Block structure for $M_6(\mathbb{R})$ -
4 ロ → 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - ⊙ Q Q - 28/35

Representation

Definition (Representation ρ)

 $\rho: SA \to M_{1+\ldots+(d+1)}(\mathbb{R})$ maps each $S(k_1-t, k_2-t; t)$ to a matrix supported on block (k_1, k_2) , where nonzero entries appear "diagonally bottom-up":

$$
\frac{\sqrt{i!j!}}{(k_1-t)!(k_2-t)!(t-(k_1-i))!} \text{ if } j-i=k_2-k_1.
$$

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ → 할 → 90 Q + 29/35

Representation

Definition (Representation ρ)

 $\rho: SA \to M_{1+\ldots+(d+1)}(\mathbb{R})$ maps each $S(k_1-t, k_2-t; t)$ to a matrix supported on block (k_1, k_2) , where nonzero entries appear "diagonally bottom-up":

$$
\frac{\sqrt{i!j!}}{(k_1-t)!(k_2-t)!(t-(k_1-i))!} \text{ if } j-i=k_2-k_1.
$$

Im(ρ): ∗ 0 ∗ 0 0 ∗ 0 ∗ 0 0 ∗ 0 ∗ 0 ∗ 0 0 ∗ 0 0 0 ∗ 0 0 0 ∗ 0 0 ∗ 0 ∗ 0 ∗ 0 0 ∗

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 90 Q + 29/35

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ → 할 → 90 Q + 29/35

Representation

Definition (Representation ρ)

 $\rho: SA \to M_{1+\ldots+(d+1)}(\mathbb{R})$ maps each $S(k_1-t, k_2-t; t)$ to a matrix supported on block (k_1, k_2) , where nonzero entries appear "diagonally bottom-up":

$$
\frac{\sqrt{i!j!}}{(k_1-t)!(k_2-t)!(t-(k_1-i))!} \text{ if } j-i=k_2-k_1.
$$

Proposition

The linear extension of ρ is an algebra isomorphism $SA \stackrel{\simeq}{\rightarrow} Im(\rho)$.

Simple spiders with equal #legs to sides: commutative subalgebra

Simple spiders with equal $#$ legs to sides: commutative subalgebra

• Fixing side-size s.

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → - ミ → 9 Q O + 30/35

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - ① 9.0 35

Simple spiders with equal $#$ legs to sides: commutative subalgebra

- Fixing side-size s.
- Elements are linear combinations $a = \sum$ i≤s $a_i \cdot S_i$,

$$
\frac{(a * b)_i}{i!} = \sum_{(j,j',): 0 \le j,j' \le i \le j+j'} {j \choose j} {j \choose i-j'} \frac{a_j}{j!} \cdot \frac{b_{j'}}{(j')!}
$$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 90 Q - 30/35

Simple spiders with equal $#$ legs to sides: commutative subalgebra

- Fixing side-size s.
- Elements are linear combinations $a = \sum$ i≤s $a_i \cdot S_i$, $(a * b)_i$ $\frac{2}{i!} = \sum_{(i,j) \in \mathcal{I}(\mathcal{I})}$ (j,j',): 0≤j,j'≤i≤j+j' $\sqrt{ }$ j \setminus / \setminus $i - j'$ $\big\}$ aj $\frac{a_j}{j!} \cdot \frac{b_{j'}}{(j')}$ $(j')!$

What does this formula look like?

Example

Simple spiders with equal $#$ legs to sides: commutative subalgebra

- Fixing side-size s.
- Elements are linear combinations $a = \sum a_i \cdot S_i$, i≤s

$$
\frac{(a * b)_i}{i!} = \sum_{(j,j',): 0 \le j,j' \le i \le j+j'} {i \choose j} {j \choose i-j'} \frac{a_j}{j!} \cdot \frac{b_{j'}}{(j')!}
$$

• Take symmetric function on $\{0,1\}^s$:

$$
f_a := \sum_{I \subseteq \{0,1\}^s} \frac{a_{|I|}}{|I|!} x^I, \quad \text{then } f_a \cdot f_b = f_{a \star b}
$$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 90 Q - 30/35

Example

Simple spiders with equal $#$ legs to sides: commutative subalgebra

- Fixing side-size s.
- Elements are linear combinations $a = \sum$ i≤s $a_i \cdot S_i$,

$$
\frac{(a * b)_i}{i!} = \sum_{(j,j',): 0 \le j,j' \le i \le j+j'} {i \choose j} {j \choose i-j'} \frac{a_j}{j!} \cdot \frac{b_{j'}}{(j')!}
$$

• Take symmetric function on $\{0,1\}^s$:

$$
f_a := \sum_{I \subseteq \{0,1\}^s} \frac{a_{|I|}}{|I|!} x^I, \quad \text{then } f_a \cdot f_b = f_{a \star b}
$$

• a is sum-of-squares in $SA \Leftrightarrow f_a$ is point-wise nonnegative

Example

Simple spiders with equal $#$ legs to sides: commutative subalgebra

- Fixing side-size s.
- $\bullet\,$ Elements are linear combinations $\mathit{a}=\sum\limits$ i≤s $a_i \cdot S_i$,

$$
\frac{(a * b)_i}{i!} = \sum_{(j,j',): 0 \le j,j' \le i \le j+j'} {i \choose j} {j \choose i-j'} \frac{a_j}{j!} \cdot \frac{b_{j'}}{(j')!}
$$

• Take symmetric function on $\{0,1\}^s$:

$$
f_a := \sum_{I \subseteq \{0,1\}^s} \frac{a_{|I|}}{|I|!} x^I, \quad \text{then } f_a \cdot f_b = f_{a \star b}
$$

- a is sum-of-squares in $SA \Leftrightarrow f_a$ is point-wise nonnegative
- f values are diagonals of ρ .

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 90 Q - 30/35

PSDness via Representation

Lemma (Structure of ρ)

$$
\bullet \ \mathsf{Im}(\rho) \cong \bigoplus_{i=0}^d M_{i+1}(\mathbb{R}).
$$

4 ロ ▶ 4 @ ▶ 4 호 ▶ 4 호 ▶ → 호 → 9 여여 → 31/35

PSDness via Representation

Lemma (Structure of ρ)

\n- **0**
$$
\text{Im}(\rho) \cong \bigoplus_{i=0}^{d} M_{i+1}(\mathbb{R})
$$
.
\n- **2** $\rho(X^{\top}) = \rho(X)^{\top}$ for all $X \in \text{SA}$.
\n

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ⊁ → 할 → 9 Q (+ 31/35)

PSDness via Representation

Lemma (Structure of ρ)

\n- \n
$$
\text{O} \operatorname{Im}(\rho) \cong \bigoplus_{i=0}^{d} M_{i+1}(\mathbb{R}).
$$
\n
\n- \n
$$
\rho(X^{\top}) = \rho(X)^{\top} \text{ for all } X \in \text{SA}.
$$
\n
\n

Item 1: ρ "contains all irreducible representations" of SA. (Wedderburn-Artin reified)

Item 2: $X \in SA$ is a sum-of-squares iff $\rho(X)$ is PSD.

PSDness via Representation

Lemma (Structure of ρ)

\n- \n
$$
\text{O} \operatorname{Im}(\rho) \cong \bigoplus_{i=0}^{d} M_{i+1}(\mathbb{R}).
$$
\n
\n- \n
$$
\rho(X^{\top}) = \rho(X)^{\top} \text{ for all } X \in \text{SA}.
$$
\n
\n

Target P under $\rho(\cdot)$:

Lemma (PSDness)

 $\rho(P)=\bigoplus P_i$, each P_i a leading principal minor of P_d , and d $i=0$

$$
P_d = \mathop{\mathbb{E}}_{z \sim A} [v(z) \cdot v(z)^\top] \text{ where } v(z) = (He_0(z), \ldots, He_d(z)).
$$

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → - ミ → 9 Q Q + 31/35

PSDness via Representation

Lemma (Structure of ρ)

\n- **0**
$$
\text{Im}(\rho) \cong \bigoplus_{i=0}^{d} M_{i+1}(\mathbb{R})
$$
.
\n- **0** $\rho(X^{\top}) = \rho(X)^{\top}$ for all $X \in \text{SA}$.
\n

Target P under $\rho(\cdot)$:

Lemma (PSDness) $\overline{1}$

$$
\rho(P) = \bigoplus_{i=0}^{d} P_i
$$
, each P_i a leading principal minor of P_d , and

$$
P_d = \mathop{\mathbb{E}}_{z \sim A} [v(z) \cdot v(z)^{\top}] \text{ where } v(z) = (He_0(z), \ldots, He_d(z)).
$$

Proof boils down to Hermite multiplicat[ion](#page-81-0) [fo](#page-83-0)[r](#page-77-0)[m](#page-78-0)[ul](#page-83-0)[a](#page-46-0)[.](#page-47-0) In the second $_{31/35}$

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → - 로 → 9 Q Q + 32/35

Lift to True PSDness

1 Using ρ back-and-forth, it's not too hard to show

$$
\left(Q_{\mathrm{main}}\right)_{SS}=a\star a^{\top},\ a\in\mathrm{SA}.
$$

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → - 로 → 9 Q Q + 32/35

Lift to True PSDness

1 Using ρ back-and-forth, it's not too hard to show

$$
(Q_{\text{main}})_{SS} = a \star a^{\top}, \ a \in SA.
$$

2 Lift to disjoint unions: d -combination operator $[\cdot]^d$

$$
[x \star y]^d = [x]^d *_{\text{wb}} ([y]^d)^\top \text{ for special } x, y.
$$

From here,

$$
Q_{\text{main}} = [a]^{d} *_{\text{wb}} ([a]^{d})^{\top} \approx [a]^{d} \cdot ([a]^{d})^{\top}.
$$

4 ロ → 4 個 → 4 ミ → 4 ミ → 2 → 9 9 0 + 32/35

Lift to True PSDness

1 Using ρ back-and-forth, it's not too hard to show

$$
(Q_{\text{main}})_{SS} = a \star a^{\top}, \ a \in \text{SA}.
$$

2 Lift to disjoint unions: d -combination operator $[\cdot]^d$

$$
[x \star y]^d = [x]^d *_{\text{wb}} ([y]^d)^\top \text{ for special } x, y.
$$

From here,

$$
Q_{\text{main}} = [a]^{d} *_{\text{wb}} ([a]^{d})^{\top} \approx [a]^{d} \cdot ([a]^{d})^{\top}.
$$

$$
3 [a]^{d}
$$
 is sufficiently non-singular.

Remark

 $[\cdot]^{d}$ operator: combinatorial construction

Outline

[Problem Formulation](#page-2-0)

2 [Pseudo-Calibration](#page-16-0)

3 [PSDness via Representation](#page-47-0)

4 [Error Analysis](#page-86-0)

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → - ミ → 9 Q Q + 33/35

[Problem Formulation](#page-2-0) [Pseudo-Calibration](#page-16-0) [PSDness via Representation](#page-47-0) **[Error Analysis](#page-86-0)**

PSDness via Representation Proposition Proposition Proposition Proposition Proposition Proposition Proposition

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → - ミ → 9 Q O + 34/35

Error Analysis: Highlights

• Error analysis is needed throughout the proof.

[Problem Formulation](#page-2-0) [Pseudo-Calibration](#page-16-0) [PSDness via Representation](#page-47-0) **[Error Analysis](#page-86-0)**

PSDness via Representation Proposition Proposition Proposition Proposition Proposition Proposition Proposition

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 90 Q - 34/35

Error Analysis: Highlights

- Error analysis is needed throughout the proof.
- Advanced charging argument in a systematic language. For norm estimates in sequential matrix multiplication.
- Interplay between min-square and min-weight separators.

35/35
35/35 - 35/35

- We prove SoS lower bounds for Non-Gaussian Component Analysis, an important problem.
- This closes the gap between statistical query/low-degree polynomial lower bounds and SoS lower bounds for NGCA, giving further evidence for the low-degree conjecture.
- The SoS lower bound problem presents intrinsic challenges. We introduce algebro-combinatorial techniques to address them.

Thank you