<□> < @> < E> < E> E の Q (? 1/35)

Sum-of-Squares Lower Bounds for Non-Gaussian Component Analysis Challenges and New Techniques

Shuo Pang

University of Copenhagen

TTIC, June 14, 2024

With Ilias Diakonikolas, Sushrut Karmalkar, and Aaron Potechin

PSDness via Representation

Outline

1 Problem Formulation

2 Pseudo-Calibration

3 PSDness via Representation

4 Error Analysis

Error Analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 4/35

Non-Gaussian Component Analysis

How many samples are needed to distinguish $N(0, \text{Id}_n)$ from a planted distribution D?

- $D = A \times N(0, \mathrm{Id}_{n-1})_{\nu^{\perp}}$, ν unknown
- A matches first k 1 moments with N(0, 1).

Error Analysis

Non-Gaussian Component Analysis

How many samples are needed to distinguish $N(0, \text{Id}_n)$ from a planted distribution D?

- $D = A \times N(0, \mathrm{Id}_{n-1})_{\nu^{\perp}}$, ν unknown
- A matches first k 1 moments with N(0, 1).

Non-Gaussian Component Analysis

How many samples are needed to distinguish $N(0, \text{Id}_n)$ from a planted distribution D?

- $D = A \times N(0, \mathrm{Id}_{n-1})_{\nu^{\perp}}$, ν unknown
- A matches first k 1 moments with N(0, 1).

Under mild conditions, information-theoretically O(n).

- Statistical Query: ≥ n^{Ω(k)} [Diakonikolas-Kane-Stewart 17]
- Spectral (k-tensor): $\leq n^{k/2}$ [Dudeja-Hsu 20]

Non-Gaussian Component Analysis

How many samples are needed to distinguish $N(0, \text{Id}_n)$ from a planted distribution D?

- $D = A \times N(0, \operatorname{Id}_{n-1})_{v^{\perp}}$, v unknown
- A matches first k 1 moments with N(0, 1).

Under mild conditions, information-theoretically O(n).

- Statistical Query: ≥ n^{Ω(k)} [Diakonikolas-Kane-Stewart 17]
- Spectral (k-tensor): $\leq n^{k/2}$ [Dudeja-Hsu 20]
- Sum-of-Squares?

Problem Formulation

Pseudo-Calibration

PSDness via Representation

Error Analysis

Problem Formulation

Given *m* i.i.d. samples $\sim N(0, \text{Id}_n)$, can SoS efficiently rule out the existence of *v*?

PSDness via Representation

Error Analysis

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ 6/35

Sum-of-Squares Relaxation

Degree-*d* SoS

Given input $x_1, \ldots, x_m \sim N(0, \mathrm{Id}_n)$, run an SDP.

PSDness via Representation

Error Analysis

Sum-of-Squares Relaxation

Degree-*d* SoS

Given input $x_1, \ldots, x_m \sim N(0, \mathrm{Id}_n)$, run an SDP.

• Variables $\{v_1^{i_1} \cdots v_n^{i_n} : i_1 + \cdots + i_n \le d\}$ (formal names, no relation)

PSDness via Representation

Error Analysis

Sum-of-Squares Relaxation

Degree-*d* SoS

Given input $x_1, \ldots, x_m \sim N(0, \mathrm{Id}_n)$, run an SDP.

• Variables $\{\mathbf{v}_1^{i_1}\cdots\mathbf{v}_n^{i_n}: i_1+\cdots+i_n \leq d\}$

(formal names, no relation)

- Constraints
 - Match statistics of A

Error Analysis

Sum-of-Squares Relaxation

Degree-*d* SoS

Given input $x_1, \ldots, x_m \sim N(0, \mathrm{Id}_n)$, run an SDP.

- Variables $\{v_1^{i_1} \cdots v_n^{i_n} : i_1 + \cdots + i_n \le d\}$ (formal names, no relation)
- Constraints

Match statistics of
$$A$$

$$\left|\frac{1}{m}\sum_{u=1}^{m}He_{i}(\langle x_{u}, v\rangle) - \underset{A}{\mathbb{E}}[He_{i}]\right| \leq O_{A}(\frac{1}{\sqrt{m}}), \quad \forall i \leq d$$

2 Positivity

Booleaness (optional)

Sum-of-Squares Relaxation

Degree-*d* SoS

Given input $x_1, \ldots, x_m \sim N(0, \mathrm{Id}_n)$, run an SDP.

- Variables $\{v_1^{i_1} \cdots v_n^{i_n} : i_1 + \cdots + i_n \le d\}$ (formal names, no relation)
- Constraints

Match statistics of A
$$\left|\frac{1}{m}\sum_{u=1}^{m}He_{i}(\langle x_{u}, v\rangle) - \mathop{\mathbb{E}}_{A}[He_{i}]\right| \leq O_{A}(\frac{1}{\sqrt{m}}), \quad \forall i \leq d$$

2 Positivity $p^2(v) \ge 0$ for all low degree polynomial p.

Booleaness (optional)

Error Analysis

Sum-of-Squares Relaxation

Degree-d SoS

Given input $x_1, \ldots, x_m \sim N(0, \mathrm{Id}_n)$, run an SDP.

- Variables $\{v_1^{i_1} \cdots v_n^{i_n} : i_1 + \cdots + i_n \le d\}$ (formal names, no relation)
- Constraints

Match statistics of A
$$\left|\frac{1}{m}\sum_{u=1}^{m}He_{i}(\langle x_{u}, v\rangle) - \mathop{\mathbb{E}}_{A}[He_{i}]\right| \leq O_{A}(\frac{1}{\sqrt{m}}), \quad \forall i \leq d$$

2 Positivity $p^2(v) \ge 0$ for all low degree polynomial p.

3 Booleaness (optional) $v'v_i^2 = \frac{1}{n}v'$

Sum-of-Squares Relaxation

• To show lower bounds, given x_1, \ldots, x_m , we find a feasible solution

 $\widetilde{E}: \{\mathbf{v'}\} \to \mathbb{R}.$

• We need to consider arbitrary x_1, \ldots, x_m .

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ - りへで 7/35

Sum-of-Squares Relaxation

• To show lower bounds, given x_1, \ldots, x_m , we find a feasible solution

$$\widetilde{\mathsf{E}}: \{ v' \} \to \mathbb{R}.$$

• We need to consider arbitrary x_1, \ldots, x_m . Pseudo-calibration

Problem Formulation

Pseudo-Calibration

PSDness via Representation

Error Analysis

Outline

1 Problem Formulation

2 Pseudo-Calibration

3 PSDness via Representation

4 Error Analysis

<ロ> < 母> < 臣> < 臣> < 臣> 三 のへで 8/35

<□ > < @ > < ≧ > < ≧ > ≧ の Q @ 9/35

Designing \widetilde{E}

Idea:

• Let $\widetilde{E}(v')$ be **low-degree polynomial** in \vec{x} .

Designing \widetilde{E}

Idea:

• Let $\widetilde{E}(v')$ be **low-degree polynomial** in \vec{x} . $\widetilde{E}(v') = \sum_{a \in \mathbb{N}^{mn}: \text{ low }} c_{I,a} \cdot He_a(\vec{x})$

 $He_a(\vec{x}) = \prod_{u,i} He_{a_{u,i}}(x_{u,i})$ Hermite polynomials.

Designing \widetilde{E}

Idea:

1 Let $\widetilde{E}(v^{T})$ be **low-degree polynomial** in \vec{x} . $\widetilde{E}(\mathbf{v}') = \sum c_{l,a} \cdot He_a(\vec{x})$ a∈Nmn · low $He_a(\vec{x}) = \prod He_{a_{u,i}}(x_{u,i})$ Hermite polynomials. n.i $He_0(x) = 1$, $He_1(x) = x$. $He_2(x) = x^2 - 1.$ $He_3(x) = x^3 - 3x$. $He_{4}(x) = x^{4} - 6x^{2} + 3.$ $He_{\pi}(x) = x^5 - 10x^3 + 15x.$ $He_6(x) = x^6 - 15x^4 + 45x^2 - 15$. $He_7(x) = x^7 - 21x^5 + 105x^3 - 105x$ $He_8(x) = x^8 - 28x^6 + 210x^4 - 420x^2 + 105.$

Designing \widetilde{E}

Idea:

• Let $\widetilde{E}(v')$ be **low-degree polynomial** in \vec{x} .

$$\widetilde{E}(\mathbf{v}') = \sum_{\boldsymbol{a} \in \mathbb{N}^{mn:} \text{ low }} \boldsymbol{c}_{\boldsymbol{l},\boldsymbol{a}} \cdot \boldsymbol{H} \boldsymbol{e}_{\boldsymbol{a}}(\vec{x})$$

Choose coefficients by pseudo-calibration.
[Barak-Hopkins-Kelner-Kothari-Moitra-Potechin 16]

Designing \widetilde{E}

Idea:

• Let $\widetilde{E}(v^{l})$ be **low-degree polynomial** in \vec{x} .

$$\widetilde{E}(\mathbf{v}^{I}) = \sum_{\boldsymbol{a} \in \mathbb{N}^{mn:} \text{ low }} \boldsymbol{c}_{I,\boldsymbol{a}} \cdot \boldsymbol{H} \boldsymbol{e}_{\boldsymbol{a}}(\vec{x})$$

Choose coefficients by pseudo-calibration.
[Barak-Hopkins-Kelner-Kothari-Moitra-Potechin 16]

 $c_{I,a}$: = average correlation over planted cases

$$= \mathop{\mathbb{E}}_{\substack{v \sim \{\frac{\pm 1}{\sqrt{n}}\}^n \\ x \sim \mathcal{D}_{v,A}}} \langle v', He_a(x) \rangle$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 10/35

Our result

Under mild conditions on A,

Theorem (SoS Lower Bounds for NGCA)

W.p. $1 - o_n(1)$ over $m = n^{(1-\epsilon)k/2}$ many samples from $N(0, \text{Id}_n)$, degree $\sqrt{\log n}$ pseudo-calibration is a feasible solution.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 10/35

Our result

Under mild conditions on A,

Theorem (SoS Lower Bounds for NGCA)

W.p. $1 - o_n(1)$ over $m = n^{(1-\epsilon)k/2}$ many samples from $N(0, \text{Id}_n)$, degree $\sqrt{\log n}$ pseudo-calibration is a feasible solution.

Conditions on A

A matches k - 1 moments and $\exists C > 0$ s.t.

- Moment Bounds
- On-singular

Our result

Under mild conditions on A,

Theorem (SoS Lower Bounds for NGCA)

W.p. $1 - o_n(1)$ over $m = n^{(1-\epsilon)k/2}$ many samples from $N(0, \text{Id}_n)$, degree $\sqrt{\log n}$ pseudo-calibration is a feasible solution.

Conditions on A

A matches k - 1 moments and $\exists C > 0$ s.t.

- **()** Moment Bounds $|\mathbb{E}[He_i]| \le (\log n)^{C \cdot i}$ for all $i \le \sqrt{\log n}$.
- Ø Non-singular

Our result

Under mild conditions on A,

Theorem (SoS Lower Bounds for NGCA)

W.p. $1 - o_n(1)$ over $m = n^{(1-\epsilon)k/2}$ many samples from $N(0, \text{Id}_n)$, degree $\sqrt{\log n}$ pseudo-calibration is a feasible solution.

Conditions on A

A matches k - 1 moments and $\exists C > 0$ s.t.

- **4** Moment Bounds $|\mathbb{E}_{A}[He_i]| \leq (\log n)^{C \cdot i}$ for all $i \leq \sqrt{\log n}$.
- **2** Non-singular $\mathbb{E}[q^2] \ge (\log n)^{-C\sqrt{\log n}}, \forall q : \deg \le \sqrt{\log n}, \ell_2 \text{-unit in } N(0,1).$

Our Result

In other words, degree $\sqrt{\log n}$ SoS algorithms require $n^{(1-\epsilon)k/2}$ samples to solve NGCA.

Our Result

In other words, degree $\sqrt{\log n}$ SoS algorithms require $n^{(1-\epsilon)k/2}$ samples to solve NGCA.

- Almost tight, matching $n^{k/2}$ [Dudeja-Hsu 22]
- Super-constant degree
- Applications:

Robust mean estimation List-decodable mean estimation Robust covariance estimation (additive, multiplicative) Learning k-mixed Gaussians ($k \ge 2$) Noisy planted planes [GJJPR 21]

...

Rest of talk:

- $m = n^{(1-\epsilon)k}$, and $\mathbb{E}_{A}[He_i] = 0$, $\forall i \in [1, k-1]$.
- positivity constraints

Problem Formulation

Pseudo-Calibration

PSDness via Representation

Error Analysis

• Positivity \Leftrightarrow moment matrix *M* is PSD

$$M(I,J) := \widetilde{E}(\mathbf{v}^{I+J}), \ \ I,J \in {[n] \choose \leq d_{SoS}}$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 13/35

Our Goal

Positivity ⇔ moment matrix *M* is PSD

$$M(I,J) := \widetilde{E}(\mathbf{v}^{I+J}), \ \ I,J \in igg([n] \le d_{SoS} igg)$$

where

$$\widetilde{E}(\mathbf{v}') = \sum_{\substack{a \in (\mathbb{N}^n)^m: \text{ low,}\\ \text{ some more conditions}}} n^{-\frac{\|I\|_1 + \|a\|_1}{2}} \frac{1}{a!} \left(\prod_{u=1}^m \mathbb{E}_A \left[He_{\|a_u\|_1} \right] \right) He_a,$$

where
$$a! := \prod_{u,i} a_{u,i}!$$
.

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 13/35

Our Goal

• Positivity \Leftrightarrow moment matrix *M* is PSD

$$M(I,J) := \widetilde{E}(\mathbf{v}^{I+J}), \ \ I,J \in {[n] \choose \leq d_{SoS}}$$

Entries of *M* are low-deg in x_{u,i} (*u* for sample, *i* for coordinate)
Invariant under S_m × S_n

Tool: Graph matrices

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 14/35

Error Analysis

Graph Matrices [Medarametla-Potechin 16, Ahn-M-P 20]

Graph matrices $\{M_{\alpha}\}$

• A basis of such matrix functions. (low-deg, "graph-theoretic")

Graph Matrices [Medarametla-Potechin 16, Ahn-M-P 20]

Graph matrices $\{M_{\alpha}\}$

• A basis of such matrix functions.

Definition (Shape)

A shape $\alpha = (V(\alpha), E(\alpha))$ is a edge-weighted graph, plus two "sides" U_{α} , V_{α} .

Graph Matrices [Medarametla-Potechin 16, Ahn-M-P 20]

Graph matrices $\{M_{\alpha}\}$

- A basis of such matrix functions.
- Shapes can be realized on [N]. Realization R gives matrix M_R .

Error Analysis

For NGCA [GJJPR 21]

 He_t(x_{u,i}): bipartite shapes, edge {(*u*), *i*} of weight t. (*u* ∈ [*m*], *i* ∈ [*n*])
Error Analysis

For NGCA [GJJPR 21]

 He_t(x_{u,i}): bipartite shapes, edge {∅, [i]} of weight t. (u ∈ [m], i ∈ [n])

 $M_{R}(\{[2], [3]\}, \{[3], [4]\}) = He_{3}(x_{1,1}) \cdot He_{1}(x_{1,2}) \cdot He_{1}(x_{1,4})$

PSDness via Representation

▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ■ ⑦ Q ℃ 16/35

Error Analysis

Norm Bounds

Theorem [Ahn-Medarametla-Potechin 20]

W.h.p. over \vec{x} , simultaneously for all small shapes α :

$$\|M_{\alpha}\| \lesssim n^{\frac{w(V)-w(S_{min})}{2}+o(1)}.$$

•
$$w(\Box) = 1$$
, $w(\bigcirc) = \log_n m$.

• *S_{min}*: minimum weight vertex separator.

PSDness via Representation

Error Analysis

Norm Bounds

Theorem [Ahn-Medarametla-Potechin 20]

W.h.p. over \vec{x} , simultaneously for all small shapes α :

$$\|M_{\alpha}\| \lesssim n^{\frac{w(V)-w(S_{min})}{2}+o(1)}.$$

•
$$w(\Box) = 1$$
, $w(\bigcirc) = \log_n m$.

• *S_{min}*: minimum weight vertex separator.

PSDness via Representation

Error Analysis

Norm Bounds

Theorem [Ahn-Medarametla-Potechin 20]

W.h.p. over \vec{x} , simultaneously for all small shapes α :

$$\|M_{\alpha}\| \lesssim n^{\frac{w(V)-w(S_{min})}{2}+o(1)}.$$

•
$$w(\Box) = 1$$
, $w(\bigcirc) = \log_n m$.

• *S_{min}*: minimum weight vertex separator.

Takeaway: $||M_{\alpha}||$ is determined by $w(V) - w(S_{min})$.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 16/35

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 17/35

Error Analysis

Analyzing Moment Matrix

Error Analysis

Analyzing Moment Matrix

First step. Factorize $M \approx LQL^{\top}$. [BHKKMP16, PR20, JPRTX21, P21, JPRX23]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 17/35

PSDness via Representation

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 18/35

Error Analysis

Factorize $M \approx LQL^{\top}$

• Intuition: shape composition <---> matrix product

PSDness via Representation

Error Analysis

Factorize $M \approx LQL^{\top}$

• Intuition: shape composition <---> matrix product

Key: use vertex separator to decompose shapes

Factorize $M pprox LQL^ op$

Intuition: shape composition + matrix product

- Key: use vertex separator to decompose shapes
- We use minimum square-vertex separators.

▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ■ ⑦ Q ℃ 19/35

Error Analysis

Factorization with Minimum Square Separators

Factorization Lemma

We have $M \approx LQL^{\top}$, where L is okayish-conditioned, and

 $Q = Q_{\min} + n^{-\epsilon}$, Q_{\min} is sum of special shapes.

PSDness via Representation

Error Analysis

Special shapes

Simple spider disjoint unions

Simple spider S(3,2;1)

A simple spider disjoint union

PSDness via Representation

Error Analysis

Outline

1 Problem Formulation

2 Pseudo-Calibration

3 PSDness via Representation

4 Error Analysis

PSDness via Representation

◆□ ▶ < 畳 ▶ < 星 ▶ < 星 ▶ 星 ⑦ Q @ 22/35</p>

Error Analysis

Many Dominant Terms

Goal: prove Q_{main} is positive-definite In all previous works, it's a constant matrix.

<□▶ < @▶ < 注▶ < 注▶ 注 の Q @ 22/35</p>

Many Dominant Terms

Goal: prove Q_{main} is positive-definite In all previous works, it's a constant matrix.

Challenge

 $Q_{\rm main}$ contains a whole family of non-constant, equally dominant shapes.

- Simple spider disjoint unions
- With recursive coefficients (involving products of $\mathbb{E}[He_i]$)

Many Dominant Terms

Goal: prove Q_{main} is positive-definite In all previous works, it's a constant matrix.

Challenge

 $Q_{\rm main}$ contains a whole family of non-constant, equally dominant shapes.

- Simple spider disjoint unions
- With recursive coefficients (involving products of E[He_i])

Idea: study multiplicative structure of them

PSDness via Representation

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の へ C 23/35

Error Analysis

Algebra of Simple Spiders

$$S_{\alpha} := (\text{scaled } M_{\alpha}) = n^{\frac{-w(E(\alpha))}{2}} M_{\alpha}.$$

Simple Spider Algebra (SA)

Basis: simple spiders with side size $\leq d$.

Multiplication \star : includes only simple spiders in $S_{\alpha} \cdot S_{\beta}$, with idealized coefficients.

PSDness via Representation

Error Analysis

Algebra of Simple Spiders

$$S_{\alpha} := (\text{scaled } M_{\alpha}) = n^{\frac{-w(E(\alpha))}{2}} M_{\alpha}.$$

Simple Spider Algebra (SA)

Basis: simple spiders with side size $\leq d$.

Multiplication \star : includes only simple spiders in $S_{\alpha} \cdot S_{\beta}$, with idealized coefficients.

PSDness via Representation

Error Analysis

Algebra of Simple Spiders

$$S_{\alpha} := (\text{scaled } M_{\alpha}) = n^{\frac{-w(E(\alpha))}{2}} M_{\alpha}.$$

Simple Spider Algebra (SA)

Basis: simple spiders with side size $\leq d$.

Multiplication \star : includes only simple spiders in $S_{\alpha} \cdot S_{\beta}$, with idealized coefficients.

Disjoint Union Algebra (SA_{disj})

On simple spider disjoint unions. $*_{wb}$: well-behaved product.

PSDness via Representation

◆□ ▶ < 畳 ▶ < 星 ▶ < 星 ▶ 24/35</p>

Error Analysis

Algebra of Simple Spiders

PSDness via Representation

Error Analysis

Algebra of Simple Spiders

Basic Properties

- (Associativity) Both are associative \mathbb{R} -algebras.
- (Compatibility) If restrict $*_{wb}$ to simple spiders, we get $\star.$
- (Approximation)

$$\|S_{\alpha} \cdot S_{\beta} - S_{\alpha} *_{\mathrm{wb}} S_{\beta}\| \leq n^{-\epsilon}$$

assuming all circles have $\geq k$ legs to each side.

<□▶ < □▶ < □▶ < 三▶ < 三▶ Ξ の へ C 24/35

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ 24/35

Algebra of Simple Spiders

Basic Properties

- (Associativity) Both are associative \mathbb{R} -algebras.
- (Compatibility) If restrict $*_{wb}$ to simple spiders, we get $\star.$
- (Approximation)

$$\|S_{\alpha} \cdot S_{\beta} - S_{\alpha} *_{\mathrm{wb}} S_{\beta}\| \leq n^{-\epsilon}$$

assuming all circles have $\geq k$ legs to each side.

Using these algebras, we can nail down Q_{main} .

PSDness via Representation

Error Analysis

Determining Q_{main}

Lemma

 Q_{main} is uniquely determined by

$$L *_{\mathrm{wb}} Q_{\mathrm{main}} *_{\mathrm{wb}} L^{\top} = P.$$
 (L, P explicit) (1)

Moreover,

$$L \star Q_{\min} \star L^{\top} = P_{SS}.$$
 (2)

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @ 25/35

L and P look like this:

PSDness via Representation

Error Analysis

Determining Q_{main}

^{(Q} (^V 25/35

PSDness via Representation

Error Analysis

Determining $Q_{ ext{main}}$

Lemma

 Q_{main} is uniquely determined by

$$L *_{\rm wb} Q_{\rm main} *_{\rm wb} L^{\top} = P.$$
 (L, P explicit) (1)

Moreover,

$$L \star \mathbf{Q}_{\min} \star L^{\top} = P_{\mathsf{SS}}.$$
 (2)

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ 25/35

The proof relies on intricate error analysis.

Problem Formulation

Pseudo-Calibration

PSDness via Representation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ へ ○ 26/35

Proving PSDness

$$L *_{\mathrm{wb}} Q_{\mathrm{main}} *_{\mathrm{wb}} L^{\top} = P \implies Q_{\mathrm{main}} \succ 0$$

PSDness via Representation

Proving PSDness

$$L *_{\mathrm{wb}} Q_{\mathrm{main}} *_{\mathrm{wb}} L^{\top} = P \implies Q_{\mathrm{main}} \succ 0$$

Proof Overview

PSDness in simple spider world \rightarrow disjoint unions \rightarrow real world

PSDness via Representation

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 26/35)

Proving PSDness

$$L *_{\mathrm{wb}} Q_{\mathrm{main}} *_{\mathrm{wb}} L^{\top} = P \implies Q_{\mathrm{main}} \succ 0$$

Proof Overview

 $\mathsf{PSDness} \text{ in simple spider world} \to \mathsf{disjoint \ unions} \to \mathsf{real \ world}$

1 Show that $P_{SS} = a \star a^{\top}$.

② Show that
$$Q_{ ext{main}} = b *_{ ext{wb}} b^ op$$
.

$$Q_{\text{main}} \approx b \cdot b^{\top} \succ 0.$$

PSDness via Representation

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ○ ○ ○ 26/35

Proving PSDness

$$L *_{\mathrm{wb}} Q_{\mathrm{main}} *_{\mathrm{wb}} L^{\top} = P \implies Q_{\mathrm{main}} \succ 0$$

Proof Overview

 $\mathsf{PSDness} \text{ in simple spider world} \to \mathsf{disjoint \ unions} \to \mathsf{real \ world}$

- Show that $P_{SS} = a \star a^{\top}$.
 - Using representation

② Show that
$$Q_{ ext{main}} = b *_{ ext{wb}} b^{ op}$$
.

$$Q_{\text{main}} \approx b \cdot b^{\top} \succ 0.$$

Ferdinand Frobenius 1849 – 1917 William Brunside 1852 – 1937 Issai Schur 1875 – 1941 Richard Brauer 1901 – 1977

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ Q ○ 27/35

PSDness via Representation

Error Analysis

Simple Spider Algebra

Basis
$$\{S(k_1, k_2; u) \mid k_1 + u, k_2 + u \leq d\}$$
.

Structural Constants

$$S(k_{1} - u, k_{2} - u; u) \star S(k_{2} - v, k_{3} - v; v) = \sum_{\substack{i=\max\{0, u+v-k_{2}\}}}^{\min\{u,v\}} {\binom{k_{1}-i}{k_{1}-u}\binom{k_{3}-i}{k_{3}-v}}/{\binom{k_{2}+i-u-v}{k_{2}}!} \cdot S(k_{1} - i, k_{3} - i; i)$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ○ Q @ 28/35

PSDness via Representation

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ∽ Q ○ 28/35

Error Analysis

Simple Spider Algebra

Basis
$$\{S(k_1, k_2; u) \mid k_1 + u, k_2 + u \leq d\}.$$

Structural Constants

$$S(k_{1} - u, k_{2} - u; u) \star S(k_{2} - v, k_{3} - v; v) = \sum_{\substack{i=\max\{0, u+v-k_{2}\}}}^{\min\{u,v\}} {\binom{k_{1}-i}{k_{1}-u}\binom{k_{3}-i}{k_{3}-v}}/{\binom{k_{2}+i-u-v}{k_{2}}!} \cdot S(k_{1} - i, k_{3} - i; i)$$

- Representation: homomorphism to a matrix algebra.
- We will construct $\rho : SA \to M_{1+\dots+(d+1)}(\mathbb{R})$.

Simple Spider Algebra

- **Representation**: homomorphism to a matrix algebra.
- We will construct $\rho : SA \to M_{1+\dots+(d+1)}(\mathbb{R}).$

PSDness via Representation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 29/35

Error Analysis

Representation

Definition (Representation ρ)

 $\rho: SA \to M_{1+...+(d+1)}(\mathbb{R})$ maps each $S(k_1 - t, k_2 - t; t)$ to a matrix supported on block (k_1, k_2) , where nonzero entries appear "diagonally bottom-up":

$$\frac{\sqrt{i!j!}}{(k_1-t)!(k_2-t)!(t-(k_1-i))!} \text{ if } j-i=k_2-k_1.$$

PSDness via Representation

Error Analysis

Representation

Definition (Representation ρ)

 $\rho: SA \to M_{1+...+(d+1)}(\mathbb{R})$ maps each $S(k_1 - t, k_2 - t; t)$ to a matrix supported on block (k_1, k_2) , where nonzero entries appear "diagonally bottom-up":

$$\frac{\sqrt{i!j!}}{(k_1-t)!(k_2-t)!(t-(k_1-i))!} \text{ if } j-i=k_2-k_1.$$

$$\operatorname{Im}(\rho): \begin{pmatrix} * & 0 & * & 0 & 0 & * \\ 0 & * & 0 & 0 & * & 0 \\ * & 0 & * & 0 & 0 & * \\ \hline 0 & 0 & 0 & * & 0 & 0 \\ 0 & * & 0 & 0 & * & 0 \\ * & 0 & * & 0 & 0 & * \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 29/35

PSDness via Representation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ 29/35

Error Analysis

Representation

Definition (Representation ρ)

 $\rho: SA \to M_{1+...+(d+1)}(\mathbb{R})$ maps each $S(k_1 - t, k_2 - t; t)$ to a matrix supported on block (k_1, k_2) , where nonzero entries appear "diagonally bottom-up":

$$\frac{\sqrt{i!j!}}{(k_1-t)!(k_2-t)!(t-(k_1-i))!} \text{ if } j-i=k_2-k_1.$$

Proposition

The linear extension of ρ is an algebra isomorphism $SA \xrightarrow{\simeq} Im(\rho)$.

Problem Formulation

Pseudo-Calibration

PSDness via Representation

Error Analysis

Simple spiders with equal #legs to sides: commutative subalgebra

Simple spiders with equal #legs to sides: commutative subalgebra

• Fixing side-size s.

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ · ∽ Q ℃ 30/35

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ · ∽ Q ℃ 30/35

Simple spiders with equal #legs to sides: commutative subalgebra

- Fixing side-size s.
- Elements are linear combinations $a = \sum_{i \leq s} a_i \cdot S_i$,

$$\frac{(a \star b)_i}{i!} = \sum_{(j,j',j): \ 0 \leq j,j' \leq i \leq j+j'} \binom{i}{j} \binom{j}{i-j'} \frac{a_j}{j!} \cdot \frac{b_{j'}}{(j')!}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ 30/35

Simple spiders with equal #legs to sides: commutative subalgebra

- Fixing side-size s.
 - Elements are linear combinations $a = \sum_{i \le s} a_i \cdot S_i$, $\frac{(a \star b)_i}{i!} = \sum_{\substack{(j,j',): \ 0 \le j, j' \le i \le j+j'}} {i \choose j} {j \choose i-j'} \frac{a_j}{j!} \cdot \frac{b_{j'}}{(j')!}$

What does this formula look like?

Example

Simple spiders with equal #legs to sides: commutative subalgebra

- Fixing side-size s.
- Elements are linear combinations $a = \sum_{i \leq s} a_i \cdot S_i$,

$$\frac{(a \star b)_i}{i!} = \sum_{(j,j',): \ 0 \leq j,j' \leq i \leq j+j'} \binom{i}{j} \binom{j}{i-j'} \frac{a_j}{j!} \cdot \frac{b_{j'}}{(j')!}$$

• Take symmetric function on $\{0,1\}^s$:

$$f_a := \sum_{I \subseteq \{0,1\}^s} rac{a_{|I|}}{|I|!} x^I$$
, then $f_a \cdot f_b = f_{a \star b}$

Example

Simple spiders with equal #legs to sides: commutative subalgebra

- Fixing side-size s.
- Elements are linear combinations $a = \sum_{i \le s} a_i \cdot S_i$,

$$\frac{(a \star b)_i}{i!} = \sum_{(j,j',j): \ 0 \le j,j' \le i \le j+j'} \binom{i}{j} \binom{j}{i-j'} \frac{a_j}{j!} \cdot \frac{b_{j'}}{(j')!}$$

• Take symmetric function on $\{0,1\}^s$:

$$f_{a} := \sum_{I \subseteq \{0,1\}^{s}} rac{a_{|I|}}{|I|!} x^{I}, ext{ then } f_{a} \cdot f_{b} = f_{a \star b}$$

• *a* is sum-of-squares in $SA \Leftrightarrow f_a$ is point-wise nonnegative

PSDness via Representation

Error Analysis

Example

Simple spiders with equal #legs to sides: commutative subalgebra

- Fixing side-size s.
- Elements are linear combinations $a = \sum_{i \le s} a_i \cdot S_i$,

$$\frac{(a \star b)_i}{i!} = \sum_{(j,j',): \ 0 \leq j,j' \leq i \leq j+j'} \binom{i}{j} \binom{j}{i-j'} \frac{a_j}{j!} \cdot \frac{b_{j'}}{(j')!}$$

• Take symmetric function on $\{0,1\}^s$:

$$f_a := \sum_{I \subseteq \{0,1\}^s} rac{a_{|I|}}{|I|!} x^I, ext{ then } f_a \cdot f_b = f_{a \star b}$$

- *a* is sum-of-squares in $SA \Leftrightarrow f_a$ is point-wise nonnegative
- f values are diagonals of ρ .

< □ ▶ < @ ▶ < E ▶ < E ▶ E のへで 30/35

PSDness via Representation

Error Analysis

PSDness via Representation

Lemma (Structure of ρ)

$$Im(\rho) \cong \bigoplus_{i=0}^d M_{i+1}(\mathbb{R}).$$

(•	0	٠	0	0	٠	
	0	Δ	0	0	Δ	0	-
	•	0	•	0	0	•	
	0	0	0	×	0	0	
	0	Δ	0	0	Δ	0	
ĺ	•	0	•	0	0	•)

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 31/35

PSDness via Representation

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 31/35

Error Analysis

PSDness via Representation

Lemma (Structure of ρ)

1
$$\operatorname{Im}(\rho) \cong \bigoplus_{i=0}^{d} M_{i+1}(\mathbb{R}).$$

 $\rho(X^{\top}) = \rho(X)^{\top} \text{ for all } X \in \operatorname{SA}$

PSDness via Representation

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ○ ○ ○ 31/35

Error Analysis

PSDness via Representation

Lemma (Structure of ρ)

1
$$\operatorname{Im}(\rho) \cong \bigoplus_{i=0}^{d} M_{i+1}(\mathbb{R}).$$

 $\rho(X^{\top}) = \rho(X)^{\top} \text{ for all } X \in \operatorname{SA}$

Item 1: ρ "contains all irreducible representations" of SA. (Wedderburn-Artin reified)

Item 2: $X \in SA$ is a sum-of-squares iff $\rho(X)$ is PSD.

PSDness via Representation

Error Analysis

PSDness via Representation

Lemma (Structure of ρ)

1
$$\operatorname{Im}(\rho) \cong \bigoplus_{i=0}^{d} M_{i+1}(\mathbb{R}).$$

2 $\rho(X^{\top}) = \rho(X)^{\top}$ for all $X \in \operatorname{SA}$.

Target *P* under $\rho(\cdot)$:

Lemma (PSDness)

 $\rho(P) = \bigoplus_{i=0}^{d} P_i$, each P_i a leading principal minor of P_d , and

$$P_d = \mathop{\mathbb{E}}_{z \sim A} [v(z) \cdot v(z)^{\top}]$$
 where $v(z) = (He_0(z), \dots, He_d(z))$.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 31/35

PSDness via Representation

Error Analysis

PSDness via Representation

Lemma (Structure of ρ)

Target **P** under $\rho(\cdot)$:

Lemma (PSDness)

$$\rho(P) = \bigoplus_{i=0}^{d} P_i$$
, each P_i a leading principal minor of P_d , and

$$P_d = \mathop{\mathbb{E}}_{z \sim A} [v(z) \cdot v(z)^{ op}]$$
 where $v(z) = (He_0(z), \dots, He_d(z))$.

PSDness via Representation

Error Analysis

Lift to True PSDness

 $\textbf{0} \ \text{Using } \rho \text{ back-and-forth, it's not too hard to show}$

$$(Q_{\min})_{SS} = a \star a^{\top}, \ a \in SA.$$

PSDness via Representation

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の へ C 32/35

Error Analysis

Lift to True PSDness

1 Using ρ back-and-forth, it's not too hard to show

$$(Q_{\min})_{SS} = a \star a^{\top}, \ a \in SA.$$

2 Lift to disjoint unions: *d*-combination operator $[\cdot]^d$

$$[x \star y]^d = [x]^d *_{\mathrm{wb}} ([y]^d)^\top$$
 for special x, y .

From here,

$$Q_{ ext{main}} = [a]^d *_{ ext{wb}} ([a]^d)^ op \approx [a]^d \cdot ([a]^d)^ op.$$

PSDness via Representation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Error Analysis

Lift to True PSDness

 $\textbf{0} \ \text{Using } \rho \text{ back-and-forth, it's not too hard to show}$

$$(Q_{\min})_{SS} = a \star a^{\top}, \ a \in SA.$$

2 Lift to disjoint unions: *d*-combination operator $[\cdot]^d$

$$[x \star y]^d = [x]^d *_{\mathrm{wb}} ([y]^d)^\top$$
 for special x, y .

From here,

$$Q_{ ext{main}} = [a]^d *_{ ext{wb}} ([a]^d)^\top \approx [a]^d \cdot ([a]^d)^\top.$$

Remark

[·]^d operator: combinatorial construction

PSDness via Representation

Outline

1 Problem Formulation

2 Pseudo-Calibration

3 PSDness via Representation

4 Error Analysis

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ · ∽ Q ℃ 33/35

PSDness via Representation

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 34/35

Error Analysis

Error Analysis: Highlights

• Error analysis is needed throughout the proof.

PSDness via Representation

Error Analysis: Highlights

- Error analysis is needed throughout the proof.
- Advanced charging argument in a systematic language. For norm estimates in sequential matrix multiplication.
- Interplay between min-square and min-weight separators.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで 35/35

- We prove SoS lower bounds for Non-Gaussian Component Analysis, an important problem.
- This closes the gap between statistical query/low-degree polynomial lower bounds and SoS lower bounds for NGCA, giving further evidence for the low-degree conjecture.
- The SoS lower bound problem presents intrinsic challenges. We introduce algebro-combinatorial techniques to address them.

Thank you