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Problem Formulation Pseudo-Calibration PSDness via Representation Error Analysis

Non-Gaussian Component Analysis

How many samples are needed to distinguish N(0, Idn) from a
planted distribution D?

� D = A× N(0, Idn−1)v⊥ , v unknown

� A matches first k − 1 moments with N(0, 1).
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Non-Gaussian Component Analysis

How many samples are needed to distinguish N(0, Idn) from a
planted distribution D?

� D = A× N(0, Idn−1)v⊥ , v unknown

� A matches first k − 1 moments with N(0, 1).

Under mild conditions, information-theoretically O(n).

� Statistical Query: ≥ nΩ(k) [Diakonikolas-Kane-Stewart 17]

� Spectral (k-tensor): ≤ nk/2 [Dudeja-Hsu 20]
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Non-Gaussian Component Analysis

How many samples are needed to distinguish N(0, Idn) from a
planted distribution D?

� D = A× N(0, Idn−1)v⊥ , v unknown

� A matches first k − 1 moments with N(0, 1).

Under mild conditions, information-theoretically O(n).

� Statistical Query: ≥ nΩ(k) [Diakonikolas-Kane-Stewart 17]

� Spectral (k-tensor): ≤ nk/2 [Dudeja-Hsu 20]

� Sum-of-Squares?
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Problem Formulation

Given m i.i.d. samples ∼ N(0, Idn), can SoS efficiently rule out the
existence of v?
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Sum-of-Squares Relaxation

Degree-d SoS

Given input x1, . . . , xm ∼ N(0, Idn), run an SDP.

� Variables {vi11 · · · vinn : i1 + · · ·+ in ≤ d}
(formal names, no relation)

� Constraints
1 Match statistics of A

∣∣∣∣∣ 1m
m∑

u=1

Hei
(
⟨xu, v⟩

)
− E

A
[Hei ]

∣∣∣∣∣ ≤ OA(
1√
m
), ∀i ≤ d

2 Positivity

3 Booleaness (optional)
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Sum-of-Squares Relaxation

Degree-d SoS

Given input x1, . . . , xm ∼ N(0, Idn), run an SDP.

� Variables {vi11 · · · vinn : i1 + · · ·+ in ≤ d}
(formal names, no relation)

� Constraints
1 Match statistics of A∣∣∣∣∣ 1m

m∑
u=1

Hei
(
⟨xu, v⟩

)
− E

A
[Hei ]

∣∣∣∣∣ ≤ OA(
1√
m
), ∀i ≤ d

2 Positivity p2(v) ≥ 0 for all low degree polynomial p.

3 Booleaness (optional) vIv2i = 1
nv

I
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Sum-of-Squares Relaxation

� To show lower bounds, given x1, . . . , xm, we find a feasible
solution

Ẽ : {vI} → R.

� We need to consider arbitrary x1, . . . , xm.

Pseudo-calibration
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Designing Ẽ

Idea:
1 Let Ẽ (vI ) be low-degree polynomial in x⃗ .

Ẽ (vI ) =
∑

a∈Nmn: low

cI ,a · Hea(x⃗)

2 Choose coefficients by pseudo-calibration.
[Barak-Hopkins-Kelner-Kothari-Moitra-Potechin 16]

cI ,a : = average correlation over planted cases

= E
v∼{±1√

n
}n

x∼Dv,A

⟨v I ,Hea(x)⟩

Lower bound task:
Show w.h.p. over x⃗ , Ẽ satisfies all constraints.
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1 Let Ẽ (vI ) be low-degree polynomial in x⃗ .
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Our result

Under mild conditions on A,

Theorem (SoS Lower Bounds for NGCA)

W.p. 1− on(1) over m = n(1−ϵ)k/2 many samples from N(0, Idn),
degree

√
log n pseudo-calibration is a feasible solution.

Conditions on A

A matches k − 1 moments and ∃C > 0 s.t.

1 Moment Bounds

|E
A
[Hei ]| ≤ (log n)C ·i for all i ≤

√
log n.

2 Non-singular
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Our result

Under mild conditions on A,

Theorem (SoS Lower Bounds for NGCA)

W.p. 1− on(1) over m = n(1−ϵ)k/2 many samples from N(0, Idn),
degree

√
log n pseudo-calibration is a feasible solution.

Conditions on A

A matches k − 1 moments and ∃C > 0 s.t.

1 Moment Bounds |E
A
[Hei ]| ≤ (log n)C ·i for all i ≤

√
log n.

2 Non-singular

E
A
[q2] ≥ (log n)−C

√
log n, ∀q : deg ≤

√
log n, ℓ2-unit in N(0, 1).



11/35

Problem Formulation Pseudo-Calibration PSDness via Representation Error Analysis

Our Result

In other words, degree
√
log n SoS algorithms require n(1−ϵ)k/2

samples to solve NGCA.

� Almost tight, matching nk/2 [Dudeja-Hsu 22]

� Super-constant degree

� Applications:

Robust mean estimation
List-decodable mean estimation
Robust covariance estimation (additive, multiplicative)
Learning k-mixed Gaussians (k ≥ 2)
Noisy planted planes [GJJPR 21]
...
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Rest of talk:

� m = n(1−ϵ)k , and E
A
[Hei ] = 0, ∀i ∈ [1, k − 1].

� positivity constraints
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Our Goal

� Positivity ⇔ moment matrix M is PSD

M(I , J) := Ẽ (vI+J), I , J ∈
(

[n]

≤ dSoS

)
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Our Goal

� Positivity ⇔ moment matrix M is PSD

M(I , J) := Ẽ (vI+J), I , J ∈
(

[n]

≤ dSoS

)
where

Ẽ (vI ) =
∑

a∈(Nn)m: low,

some more conditions

n−
∥I∥1+∥a∥1

2
1

a!

(
m∏

u=1

E
A

[
He∥au∥1

])
Hea,

where a! :=
∏
u,i

au,i !.
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Our Goal

� Positivity ⇔ moment matrix M is PSD

M(I , J) := Ẽ (vI+J), I , J ∈
(

[n]

≤ dSoS

)
Entries of M are low-deg in xu,i (u for sample, i for coordinate)
Invariant under Sm × Sn

Tool: Graph matrices
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Graph Matrices [Medarametla-Potechin 16, Ahn-M-P 20]

Graph matrices {Mα}

� A basis of such matrix functions. (low-deg, “graph-theoretic”)
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Graph Matrices [Medarametla-Potechin 16, Ahn-M-P 20]

Graph matrices {Mα}
� A basis of such matrix functions.

Definition (Shape)

A shape α = (V (α),E (α)) is a edge-weighted graph, plus two
“sides” Uα, Vα.
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Graph Matrices [Medarametla-Potechin 16, Ahn-M-P 20]

Graph matrices {Mα}

� A basis of such matrix functions.

� Shapes can be realized on [N]. Realization R gives matrix MR .

� Mα =
∑

realization of α

MR .
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For NGCA [GJJPR 21]

� Het(xu,i ): bipartite shapes, edge { uO, i } of weight t.
(u ∈ [m], i ∈ [n])

1

2

3

1

4

3

MR

(
{ 2 , 3 }, { 3 , 4 }

)
= He3(x1,1) · He1(x1,2) · He1(x1,4)
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Norm Bounds

Theorem [Ahn-Medarametla-Potechin 20]

W.h.p. over x⃗ , simultaneously for all small shapes α:

∥Mα∥ ≲ n
w(V )−w(Smin)

2
+o(1).

� w(□) = 1, w(#) = logn m.

� Smin: minimum weight vertex separator.
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Norm Bounds

Theorem [Ahn-Medarametla-Potechin 20]

W.h.p. over x⃗ , simultaneously for all small shapes α:

∥Mα∥ ≲ n
w(V )−w(Smin)

2
+o(1).

� w(□) = 1, w(#) = logn m.

� Smin: minimum weight vertex separator.

Takeaway: ∥Mα∥ is determined by w(V )− w(Smin).
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Analyzing Moment Matrix

M =
∑

α: small,
other conditions

(Hermite coefficient)︸ ︷︷ ︸∏
v : circle

E
A

[
Hedegα(v)

]
∏

e∈E(α)

w(e)!

· (Scaling coefficient)︸ ︷︷ ︸
n−w(E(α))/2

·Mα
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Analyzing Moment Matrix

M =
∑

α: small,
other conditions

(Hermite coefficient)︸ ︷︷ ︸∏
v : circle

E
A

[
Hedegα(v)

]
∏

e∈E(α)

w(e)!

· (Scaling coefficient)︸ ︷︷ ︸
n−w(E(α))/2

·Mα

First step. Factorize M ≈ LQL⊤.
[BHKKMP16, PR20, JPRTX21, P21, JPRX23]
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Factorize M ≈ LQL⊤

� Intuition: shape composition ↭ matrix product

� Key: use vertex separator to decompose shapes
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Factorize M ≈ LQL⊤

� Intuition: shape composition ↭ matrix product

� Key: use vertex separator to decompose shapes

� We use minimum square-vertex separators.
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Factorization with Minimum Square Separators

Factorization Lemma

We have M ≈ LQL⊤, where L is okayish-conditioned, and

Q = Qmain + n−ϵ, Qmain is sum of special shapes.
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Special shapes

Simple spider disjoint unions
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Many Dominant Terms

Goal: prove Qmain is positive-definite
In all previous works, it’s a constant matrix.

Challenge

Qmain contains a whole family of non-constant, equally dominant
shapes.

� Simple spider disjoint unions

� With recursive coefficients (involving products of E
A
[Hei ])

Idea: study multiplicative structure of them
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Algebra of Simple Spiders

Sα := (scaled Mα) = n
−w(E(α))

2 Mα.

Simple Spider Algebra (SA)

Basis: simple spiders with side size ≤ d .

Multiplication ⋆: includes only simple spiders in Sα · Sβ, with
idealized coefficients.
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Algebra of Simple Spiders

Sα := (scaled Mα) = n
−w(E(α))

2 Mα.

Simple Spider Algebra (SA)

Basis: simple spiders with side size ≤ d .

Multiplication ⋆: includes only simple spiders in Sα · Sβ, with
idealized coefficients.

Disjoint Union Algebra (SAdisj)

On simple spider disjoint unions. ∗wb: well-behaved product.
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Algebra of Simple Spiders
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Algebra of Simple Spiders

Basic Properties

� (Associativity) Both are associative R-algebras.

� (Compatibility) If restrict ∗wb to simple spiders, we get ⋆.

� (Approximation)

∥Sα · Sβ − Sα ∗wb Sβ∥ ≤ n−ϵ

assuming all circles have ≥ k legs to each side.
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Algebra of Simple Spiders

Basic Properties

� (Associativity) Both are associative R-algebras.

� (Compatibility) If restrict ∗wb to simple spiders, we get ⋆.

� (Approximation)

∥Sα · Sβ − Sα ∗wb Sβ∥ ≤ n−ϵ

assuming all circles have ≥ k legs to each side.

Using these algebras, we can nail down Qmain.
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Determining Qmain

Lemma

Qmain is uniquely determined by

L ∗wb Qmain ∗wb L
⊤ = P. (L, P explicit) (1)

Moreover,
L ⋆ Qmain ⋆ L

⊤ = PSS. (2)

L and P look like this:

∑
α:

simple spider disjoint union
with certain conditions

( ∏
v : circle vertex

E
A
[Hedeg(v)]

)
· Sα
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Determining Qmain

L and P look like this:∑
α:

simple spider disjoint union
with certain conditions

( ∏
v : circle vertex

E
A
[Hedeg(v)]

)
· Sα

Some terms:
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Determining Qmain

Lemma

Qmain is uniquely determined by

L ∗wb Qmain ∗wb L
⊤ = P. (L, P explicit) (1)

Moreover,
L ⋆ Qmain ⋆ L

⊤ = PSS. (2)

The proof relies on intricate error analysis.
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Proving PSDness

L ∗wb Qmain ∗wb L
⊤ = P ⇒ Qmain ≻ 0

Proof Overview

PSDness in simple spider world → disjoint unions → real world

1 Show that PSS = a ⋆ a⊤.

Using representation

2 Show that Qmain = b ∗wb b
⊤.

3 Qmain ≈ b · b⊤ ≻ 0.
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Simple Spider Algebra

Basis {S(k1, k2; u) | k1 + u, k2 + u ≤ d}.

Structural Constants

S(k1 − u, k2 − u; u) ⋆ S(k2 − v , k3 − v ; v) =
min{u,v}∑

i=max{0,u+v−k2}

(k1−i
k1−u

)(k3−i
k3−v

)
/(k2 + i − u − v)! · S(k1 − i , k3 − i ; i)
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Representation

Definition (Representation ρ)

ρ : SA → M1+...+(d+1)(R) maps each S(k1 − t, k2 − t; t) to a
matrix supported on block (k1, k2), where nonzero entries appear
“diagonally bottom-up”:

√
i !j!

(k1 − t)!(k2 − t)!
(
t − (k1 − i)

)
!
if j − i = k2 − k1.
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Definition (Representation ρ)

ρ : SA → M1+...+(d+1)(R) maps each S(k1 − t, k2 − t; t) to a
matrix supported on block (k1, k2), where nonzero entries appear
“diagonally bottom-up”:

√
i !j!

(k1 − t)!(k2 − t)!
(
t − (k1 − i)

)
!
if j − i = k2 − k1.

Im(ρ):



∗ 0 ∗ 0 0 ∗
0 ∗ 0 0 ∗ 0
∗ 0 ∗ 0 0 ∗
0 0 0 ∗ 0 0
0 ∗ 0 0 ∗ 0
∗ 0 ∗ 0 0 ∗


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Representation

Definition (Representation ρ)

ρ : SA → M1+...+(d+1)(R) maps each S(k1 − t, k2 − t; t) to a
matrix supported on block (k1, k2), where nonzero entries appear
“diagonally bottom-up”:

√
i !j!

(k1 − t)!(k2 − t)!
(
t − (k1 − i)

)
!
if j − i = k2 − k1.

Proposition

The linear extension of ρ is an algebra isomorphism SA
≃→ Im(ρ).
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Simple spiders with equal #legs to sides: commutative subalgebra

� Fixing side-size s.

� Elements are linear combinations a =
∑
i≤s

ai · Si ,

(a ⋆ b)i
i !

=
∑

(j ,j ′,): 0≤j ,j ′≤i≤j+j ′

(
i

j

)(
j

i − j ′

)
aj
j!

·
bj ′

(j ′)!
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i

j
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)
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j!

·
bj ′

(j ′)!

What does this formula look like?
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Example

Simple spiders with equal #legs to sides: commutative subalgebra

� Fixing side-size s.

� Elements are linear combinations a =
∑
i≤s

ai · Si ,

(a ⋆ b)i
i !

=
∑

(j ,j ′,): 0≤j ,j ′≤i≤j+j ′

(
i

j

)(
j

i − j ′

)
aj
j!

·
bj ′

(j ′)!

� Take symmetric function on {0, 1}s :

fa :=
∑

I⊆{0,1}s

a|I |
|I |!

x I , then fa · fb = fa⋆b

� a is sum-of-squares in SA ⇔ fa is point-wise nonnegative

� f values are diagonals of ρ.
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PSDness via Representation

Lemma (Structure of ρ)

1 Im(ρ) ∼=
d⊕

i=0
Mi+1(R).



• 0 • 0 0 •
0 ∆ 0 0 ∆ 0

• 0 • 0 0 •
0 0 0 × 0 0

0 ∆ 0 0 ∆ 0

• 0 • 0 0 •


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PSDness via Representation

Lemma (Structure of ρ)

1 Im(ρ) ∼=
d⊕

i=0
Mi+1(R).

2 ρ(X⊤) = ρ(X )⊤ for all X ∈ SA.

Item 1: ρ “contains all irreducible representations” of SA.
(Wedderburn-Artin reified)

Item 2: X ∈ SA is a sum-of-squares iff ρ(X ) is PSD.
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PSDness via Representation

Lemma (Structure of ρ)

1 Im(ρ) ∼=
d⊕

i=0
Mi+1(R).

2 ρ(X⊤) = ρ(X )⊤ for all X ∈ SA.

Target P under ρ(·):

Lemma (PSDness)

ρ(P) =
d⊕

i=0
Pi , each Pi a leading principal minor of Pd , and

Pd = E
z∼A

[v(z) · v(z)⊤] where v(z) = (He0(z), . . . ,Hed(z)) .
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PSDness via Representation

Lemma (Structure of ρ)

1 Im(ρ) ∼=
d⊕

i=0
Mi+1(R).

2 ρ(X⊤) = ρ(X )⊤ for all X ∈ SA.

Target P under ρ(·):

Lemma (PSDness)

ρ(P) =
d⊕

i=0
Pi , each Pi a leading principal minor of Pd , and

Pd = E
z∼A

[v(z) · v(z)⊤] where v(z) = (He0(z), . . . ,Hed(z)) .

Proof boils down to Hermite multiplication formula.
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Lift to True PSDness

1 Using ρ back-and-forth, it’s not too hard to show

(Qmain)SS = a ⋆ a⊤, a ∈ SA.

2 Lift to disjoint unions: d-combination operator [·]d

[x ⋆ y ]d = [x ]d ∗wb ([y ]
d)⊤ for special x , y .

From here,

Qmain = [a]d ∗wb ([a]
d)⊤ ≈ [a]d · ([a]d)⊤.

3 [a]d is sufficiently non-singular.

Remark

[·]d operator: combinatorial construction
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Outline

1 Problem Formulation

2 Pseudo-Calibration

3 PSDness via Representation

4 Error Analysis
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Error Analysis: Highlights

� Error analysis is needed throughout the proof.

� Advanced charging argument in a systematic language.
For norm estimates in sequential matrix multiplication.

� Interplay between min-square and min-weight separators.
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Summary

� We prove SoS lower bounds for Non-Gaussian Component
Analysis, an important problem.

� This closes the gap between statistical query/low-degree
polynomial lower bounds and SoS lower bounds for NGCA,
giving further evidence for the low-degree conjecture.

� The SoS lower bound problem presents intrinsic challenges. We
introduce algebro-combinatorial techniques to address them.

Thank you
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