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Overview

▶ Background

▷ Algorithmic framework

▶ Polynomial-time algorithms

▷ Some improvements

▶ Quadratic-time algorithms

▶ Subquadratic-time algorithms
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Introducing structured robust estimation

▶ So far, we have seen unstructured parameter estimation

Problem statement. (Robust mean estimation)
Let P be an unknown nice distribution over Rd with mean µ

Input: corrupted samples from P
Output: µ̂ such that ∥µ̂− µ∥2 is small w.h.p.

▶ Sample complexity: Θ(d)

Can we reduce the sample complexity if µ is structured?

in this talk: sparsity
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Motivating sparsity

▶ Many data distributions are sparse
▷ Images in wavelet basis
▷ Bioinformatics

▶ A classical concept in statistics
▷ Extra information about the true parameter
▷ Allows us to get smaller error (alternatively, lower sample complexity)

This talk: Utilizing the structure of sparsity robustly.
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Our question: efficient robust sparse estimation

Problem statement. (Robust sparse mean estimation)
Let P be an unknown nice distribution over Rd with a k-sparse mean µ

Input: corrupted samples from P
Output: µ̂ such that ∥µ̂− µ∥2 is small w.h.p.

▶ Sample complexity: Θ(k log d)

▷ Huge reduction in sample complexity!

▶ Alas, achieving sample complexity is computationally hard

Relaxed goal: Achieving poly(k, log d) sample complexity, efficiently
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Prelude: a path towards robust dense estimation

▶ Suppose the inliers are sampled fromN (µ, I)

▶ (Reducing to one-dimension) ∥µ̂− µ∥2 = supv⟨v, µ̂− µ⟩
▷ Equivalent to ensuring accurate estimates in all directions v

▶ Key insight [DKKLMS16; LRV16]: For any direction v,
▷ The sample mean is accurate if the sample variance is bounded
▷ Else if the sample variance is large, we can filter the outliers

Algorithmic template: robust (dense) estimation

1. While there exists a direction v with large variance:

1.1 Filter each point x using v⊤x

2. µ̂← sample mean

▶ sample mean and covariance should be accurate for clean data

and all large subsets (termed stability)



7/30

Prelude: a path towards robust dense estimation

▶ Suppose the inliers are sampled fromN (µ, I)

▶ (Reducing to one-dimension) ∥µ̂− µ∥2 = supv⟨v, µ̂− µ⟩
▷ Equivalent to ensuring accurate estimates in all directions v

▶ Key insight [DKKLMS16; LRV16]: For any direction v,
▷ The sample mean is accurate if the sample variance is bounded
▷ Else if the sample variance is large, we can filter the outliers

Algorithmic template: robust (dense) estimation

1. While there exists a direction v with large variance:

1.1 Filter each point x using v⊤x

2. µ̂← sample mean

▶ sample mean and covariance should be accurate for clean data

and all large subsets (termed stability)



7/30

Prelude: a path towards robust dense estimation
▶ Suppose the inliers are sampled fromN (µ, I)

▶ (Reducing to one-dimension) ∥µ̂− µ∥2 = supv⟨v, µ̂− µ⟩
▷ Equivalent to ensuring accurate estimates in all directions v

▶ Key insight [DKKLMS16; LRV16]: For any direction v,
▷ The sample mean is accurate if the sample variance is bounded
▷ Else if the sample variance is large, we can filter the outliers

Algorithmic template: robust (dense) estimation

1. While there exists a direction v with large variance:

1.1 Filter each point x using v⊤x

2. µ̂← sample mean

▶ sample mean and covariance should be accurate for clean data

and all large subsets (termed stability)

[DKKLMS16] I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, A. Stewart. Robust estimators in high... FOCS. 2016
[LRV16] K. A. Lai, A. B. Rao, S. Vempala. Agnostic Estimation of Mean and Covariance. FOCS. 2016



7/30

Prelude: a path towards robust dense estimation
▶ Suppose the inliers are sampled fromN (µ, I)

▶ (Reducing to one-dimension) ∥µ̂− µ∥2 = supv⟨v, µ̂− µ⟩
▷ Equivalent to ensuring accurate estimates in all directions v

▶ Key insight [DKKLMS16; LRV16]: For any direction v,
▷ The sample mean is accurate if the sample variance is bounded
▷ Else if the sample variance is large, we can filter the outliers

Algorithmic template: robust (dense) estimation

1. While there exists a direction v with large variance:

1.1 Filter each point x using v⊤x

2. µ̂← sample mean

▶ sample mean and covariance should be accurate for clean data

and all large subsets (termed stability)

[DKKLMS16] I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, A. Stewart. Robust estimators in high... FOCS. 2016
[LRV16] K. A. Lai, A. B. Rao, S. Vempala. Agnostic Estimation of Mean and Covariance. FOCS. 2016



7/30

Prelude: a path towards robust dense estimation
▶ Suppose the inliers are sampled fromN (µ, I)

▶ (Reducing to one-dimension) ∥µ̂− µ∥2 = supv⟨v, µ̂− µ⟩
▷ Equivalent to ensuring accurate estimates in all directions v

▶ Key insight [DKKLMS16; LRV16]: For any direction v,
▷ The sample mean is accurate if the sample variance is bounded
▷ Else if the sample variance is large, we can filter the outliers

Algorithmic template: robust (dense) estimation

1. While there exists a direction v with large variance:

1.1 Filter each point x using v⊤x

2. µ̂← sample mean

▶ sample mean and covariance should be accurate for clean data
and all large subsets

(termed stability)

[DKKLMS16] I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, A. Stewart. Robust estimators in high... FOCS. 2016
[LRV16] K. A. Lai, A. B. Rao, S. Vempala. Agnostic Estimation of Mean and Covariance. FOCS. 2016



7/30

Prelude: a path towards robust dense estimation
▶ Suppose the inliers are sampled fromN (µ, I)

▶ (Reducing to one-dimension) ∥µ̂− µ∥2 = supv⟨v, µ̂− µ⟩
▷ Equivalent to ensuring accurate estimates in all directions v

▶ Key insight [DKKLMS16; LRV16]: For any direction v,
▷ The sample mean is accurate if the sample variance is bounded
▷ Else if the sample variance is large, we can filter the outliers

Algorithmic template: robust (dense) estimation

1. While there exists a direction v with large variance:

1.1 Filter each point x using v⊤x

2. µ̂← sample mean

▶ sample mean and covariance should be accurate for clean data
and all large subsets (termed stability)

[DKKLMS16] I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, A. Stewart. Robust estimators in high... FOCS. 2016
[LRV16] K. A. Lai, A. B. Rao, S. Vempala. Agnostic Estimation of Mean and Covariance. FOCS. 2016



8/30

Next, a path towards robust sparse estimation

▶ Suppose the inliers are sampled fromN (µ, I), where µ is k-sparse

▶ (Projections) ∥HardThresh(µ̂)− µ∥2 ≲ supv:k-sparse⟨v, µ̂− µ⟩

▷ Only the sparse directions matter

Algorithmic template: robust sparse estimation
1. While there exists a sparse direction v with large variance:

1.1 Filter points after projecting onto v

2. Return HardThresh(sample mean)

intractable!

How to design an efficient subroutine?
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Towards efficient estimation via relaxed certificates
▶ Sparse operator norm ∥A∥op,k := maxv:k-sparse v

⊤Av

▶ Robustness requires ensuring that ∥Σ̂− I∥op,k be small

Instead, we design an efficient certificate f(·) such that:

1. ∥A∥op,k ≤ f(A) and ...

2. f(Σ̂− I) is small for clean data

Algorithmic template: Robust sparse estimation, efficiently

1. While f(Σ̂− I) large:
1.1 Filter points and update Σ̂

2. Return HardThresh(sample mean)

Better certificates =⇒ better algorithms
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An approach via semidefinite programs
▶ Efficient algorithms first developed in [BDLS17].

▶ Recall ∥A∥op,k := maxv:k-sparse |⟨vv⊤,A⟩|
▶ Inspired by [dGJL07] dAspGJL07, they defined

∥A∥Xk
:= max

M∈Xk

|⟨M,A⟩|,

where
Xk := {M ⪰ 0 : tr(M) = 1, ∥M∥1 ≤ k}

▶ Valid relaxation: vv⊤ ∈ Xk (dropped rank constraint; ∥v∥1 ≤
√
k)

SDP-stability. A set S is SDP-stable w.r.t. µ if for all large S′ ⊂ S

▷ (Mean) supv:k-sparse⟨v, µS′ − µ⟩ is small

▷ (Covariance) ∥ΣS′ − I∥Xk
is small

[BDLS17] S. Balakrishnan, S. S. Du, J. Li, A. Singh. Computationally Efficient Robust Sparse Estimation.. COLT. 2017
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Robust sparse mean estimation in polynomial time [BDLS17]

Theorem: (BDLS17)

Given ϵ-contaminated samples from an isotropic subgaussian distribu-
tion with k-sparse mean µ, a polynomial-time algorithm to compute µ̂:

▶ (sample complexity) n = Õ
(
k2/ϵ2

)
samples

▶ (error) ∥µ̂− µ∥2 = Õ(ϵ)

▶ Near-optimal asymptotic error
▶ Near-optimal computational sample complexity
▶ Runtime: polynomial but existing SDP solvers are impractical

▷ Current bounds: Ω(d4) time
▷ Open problem: design faster solvers for this SDP
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Proof sketch: stability with a small number of samples
Xk := {M ⪰ 0 : tr(M) = 1, ∥M∥1 ≤ k}

∥A∥Xk
:= supM∈Xk

|⟨M,A⟩|▶ Algorithm: Filtering (with SDP relaxation)

▶ SDP-Stability: For all large subsets S′ of S:
▷ (Mean) supv:sparse⟨v, µS′ − µ⟩ is small
▷ (Covariance) ∥ΣS′ − I∥Xk

is small

▶ Goal: k2 samples

Proof sketch (of a weaker bound)

max
S′⊂S:large

∥ΣS′∥Xk

≲ ∥ΣS∥Xk
≤ 1 + ∥ΣS − I∥Xk

≤ k ∥ΣS − I∥∞

≤ k
Õ(1)√

n
■

M PSD and 0 ⪯ ΣS′ ⪯ 2ΣStriangle inequality

Hölder’s inequality

Hoeffding’s inequality

and union bound
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Õ(1)√

n
■

M PSD and 0 ⪯ ΣS′ ⪯ 2ΣStriangle inequality

Hölder’s inequality

Hoeffding’s inequality

and union bound



13/30

Proof sketch: stability with a small number of samples
Xk := {M ⪰ 0 : tr(M) = 1, ∥M∥1 ≤ k}

∥A∥Xk
:= supM∈Xk

|⟨M,A⟩|▶ Algorithm: Filtering (with SDP relaxation)

▶ SDP-Stability: For all large subsets S′ of S:
▷ (Mean) supv:sparse⟨v, µS′ − µ⟩ is small
▷ (Covariance) ∥ΣS′ − I∥Xk

is small

▶ Goal: k2 samples

Proof sketch (of a weaker bound)

max
S′⊂S:large

∥ΣS′∥Xk
≲ ∥ΣS∥Xk

≤ 1 + ∥ΣS − I∥Xk

≤ k ∥ΣS − I∥∞

≤ k
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Overview

▶ Background

▷ Algorithmic framework

▶ Polynomial-time algorithms

▷ Some improvements

▶ Quadratic-time algorithms

▶ Subquadratic-time algorithms
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I. Heavy-tailed distributions

To apply [BDLS17] to heavy-tailed distributions, we need to ask:

Do heavy-tailed inliers satisfy SDP stability with good sample complexity?

▶ No! Samples might be aligned with coordinate axes

▶ Fix: clip samples coordinatewise (i.e., ∥x∥∞ ≤ ν for ν = poly(k))

▷ clipping-induced bias versus tails

▶ Previous proof: S is stable w.p. 1− δ, if n ≈ k2 · ν4 · log(1/δ)

▶ Two shortcomings of this result:

▷ Dependence on k: superquadratic (ν) instead of quadratic

▷ Dependence on δ: multiplicative instead of additive

Can we close this gap?
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Heavy-tailed distributions: improved sample complexity

Theorem: [DKLP22]

P : k-sparse mean µ, bounded covariance, and degree-four* moments.
An efficient algorithm to output µ̂ from ϵ-contaminated data: w.p. 1−δ,

▶ (sample complexity) n = O

(
k2

log d log(1/δ)
ϵ

)
samples

▶ (error) ∥µ̂− µ∥2 = O(
√
ϵ)

▶ Near-optimal asymptotic error*, computational sample complexity*

▶ Algorithm: same SDP as [BDLS17]; with improved probabilistic analysis
▶ Open questions

▷ removing bounded fourth-moment* condition
▷ faster runtime

[DKLP22] I. Diakonikolas, D. Kane, J. Lee, A. Pensia. Outlier-Robust Sparse Estimation for Heavy-Tailed. NeurIPS. 2022
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Proof sketch of improved sample complexity

▶ Algorithm works even if inliers contains a large stable subset

▶ Do heavy-tailed (clipped) inliers contain a large stable subset?

Equivalent to the following question:

LetS be a set ofn i.i.d. samples fromP (heavy-tailed, bdd. coordinates)

Does the following hold

with n ≈ k2?

w.h.p., ∀ M ∈ Xk : Px∼S

(
x⊤Mx≫ 1

)
≤ 0.1

holds at the population (n → ∞) by Markov
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Rounding analytically sparse PSD matrices to sparse matrices

Xk := {M ⪰ 0 : tr(M) = 1, ∥M∥1 ≤ k}

LetS be a set ofn i.i.d. samples fromP (heavy-tailed, bdd. coordinates)
Does the following hold with n ≈ k2?

w.h.p., ∀ M ∈ Xk : Px∼S

(
x⊤Mx≫ 1

)
≤ 0.1

▶ Challenge: VC dimension of Xk≫ k2

▶ Idea : relate it toAk := {B : ∥B∥Fr = 1, ∥B∥0 ≤ k2}

▷ (Good) VC dimension ofAk is k2 and ∥ · ∥Xk
≲ ∥ · ∥Ak

▷ But x⊤Bx might have large variance (dependent coordinates)

▶ Fix [DKLP22]: Ak,P := {B ∈ Ak : Px∼P (x
⊤Bx≫ 1) ≤ 0.1}

Theorem: Sparse rounding (worst-case) [DKLP22]

Given M ∈ Xk , there is a random matrix Q
▶ w.h.p., Q ∈ Ak,P

▶ x⊤Mx≫ 1 for clipped x implies PQ(x⊤Qx≫ 1) ≥ 0.4
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▶ Idea [Li18]: relate it toAk := {B : ∥B∥Fr = 1, ∥B∥0 ≤ k2}

▷ (Good) VC dimension ofAk is k2 and ∥ · ∥Xk
≲ ∥ · ∥Ak

▷ But x⊤Bx might have large variance (dependent coordinates)

▶ Fix [DKLP22]: Ak,P := {B ∈ Ak : Px∼P (x
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II. Adapting to unknown covariance

Suppose the distribution has bounded t-th moments; t≫ 1

▶ Optimal asymptotic error: O(ϵ1−
1
t )

▶ However, for unknown covariance, [BDLS17] gets stuck at Ω(
√
ϵ)

Theorem: [DKKPP22]

Given ϵ-contaminated samples from a distribution P on Rd with

k-sparse mean µ and bounded t-th moments

:

▶ (lower bound) Efficient* algorithms need n ≫ kΩ(t) samples for
O(ϵ1−

1
t ) error

▶ (upper bound) A polynomial-time algorithm using n = kO(t)/ϵ2

samples with matching error

if moments are certifiably* bounded

[BDLS17] S. Balakrishnan, S. S. Du, J. Li, A. Singh. Computationally Efficient Robust Sparse Estimation.. COLT. 2017
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Overview

▶ Background

▷ Algorithmic framework

▶ Polynomial-time algorithms

▷ Some improvements

▶ Quadratic-time algorithms

▶ Subquadratic-time algorithms
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Towards practical algorithms
∥A∥op,k := supv:sparse |v⊤Av|

▶ More practical certificates for the sparse operator norm?

▶ We want a practical function f(·):
▷ ∥A∥op,k ≤ f(A)

▷ f(Σ− I) is bounded for clean data and all large subsets (stability)

▶ Suppose f(A) = supB∈B⟨B,A⟩.

▶ Desirable properties of B:
▷ sparsity-aware
▷ practical to search for B∗

▷ (For stability) For all B in B, x⊤Bx has bdd. variance

for gaussians

▶ [DKKPS19]: B := {B : ∥B∥Fr = 1, ∥B∥0 ≤ k2}
▷ f(A) is a “sparse Frobenius norm”: ℓ2 norm of the largest k2 entries

in d2 time



21/30

Towards practical algorithms
∥A∥op,k := supv:sparse |v⊤Av|

▶ More practical certificates for the sparse operator norm?

▶ We want a practical function f(·):
▷ ∥A∥op,k ≤ f(A)

▷ f(Σ− I) is bounded for clean data and all large subsets (stability)

▶ Suppose f(A) = supB∈B⟨B,A⟩.

▶ Desirable properties of B:
▷ sparsity-aware
▷ practical to search for B∗

▷ (For stability) For all B in B, x⊤Bx has bdd. variance

for gaussians

▶ [DKKPS19]: B := {B : ∥B∥Fr = 1, ∥B∥0 ≤ k2}
▷ f(A) is a “sparse Frobenius norm”: ℓ2 norm of the largest k2 entries

in d2 time



21/30

Towards practical algorithms
∥A∥op,k := supv:sparse |v⊤Av|

▶ More practical certificates for the sparse operator norm?

▶ We want a practical function f(·):
▷ ∥A∥op,k ≤ f(A)

▷ f(Σ− I) is bounded for clean data and all large subsets (stability)

▶ Suppose f(A) = supB∈B⟨B,A⟩.

▶ Desirable properties of B:
▷ sparsity-aware
▷ practical to search for B∗

▷ (For stability) For all B in B, x⊤Bx has bdd. variance

for gaussians

▶ [DKKPS19]: B := {B : ∥B∥Fr = 1, ∥B∥0 ≤ k2}
▷ f(A) is a “sparse Frobenius norm”: ℓ2 norm of the largest k2 entries

in d2 time



21/30

Towards practical algorithms
∥A∥op,k := supv:sparse |v⊤Av|

▶ More practical certificates for the sparse operator norm?

▶ We want a practical function f(·):
▷ ∥A∥op,k ≤ f(A)

▷ f(Σ− I) is bounded for clean data and all large subsets (stability)

▶ Suppose f(A) = supB∈B⟨B,A⟩.

▶ Desirable properties of B:
▷ sparsity-aware
▷ practical to search for B∗

▷ (For stability) For all B in B, x⊤Bx has bdd. variance

for gaussians

▶ [DKKPS19]: B := {B : ∥B∥Fr = 1, ∥B∥0 ≤ k2}
▷ f(A) is a “sparse Frobenius norm”: ℓ2 norm of the largest k2 entries

in d2 time



21/30

Towards practical algorithms
∥A∥op,k := supv:sparse |v⊤Av|

▶ More practical certificates for the sparse operator norm?

▶ We want a practical function f(·):
▷ ∥A∥op,k ≤ f(A)

▷ f(Σ− I) is bounded for clean data and all large subsets (stability)

▶ Suppose f(A) = supB∈B⟨B,A⟩.

▶ Desirable properties of B:
▷ sparsity-aware
▷ practical to search for B∗

▷ (For stability) For all B in B, x⊤Bx has bdd. variance

for gaussians

▶ [DKKPS19]: B := {B : ∥B∥Fr = 1, ∥B∥0 ≤ k2}

▷ f(A) is a “sparse Frobenius norm”: ℓ2 norm of the largest k2 entries

in d2 time

[DKKPS19] I. Diakonikolas, D. Kane, S. Karmalkar, E. Price, A. Stewart. Outlier-Robust Sparse Estimation... NeurIPS. 2019



21/30

Towards practical algorithms
∥A∥op,k := supv:sparse |v⊤Av|

▶ More practical certificates for the sparse operator norm?

▶ We want a practical function f(·):
▷ ∥A∥op,k ≤ f(A)

▷ f(Σ− I) is bounded for clean data and all large subsets (stability)

▶ Suppose f(A) = supB∈B⟨B,A⟩.

▶ Desirable properties of B:
▷ sparsity-aware
▷ practical to search for B∗

▷ (For stability) For all B in B, x⊤Bx has bdd. variance

for gaussians

▶ [DKKPS19]: B := {B : ∥B∥Fr = 1, ∥B∥0 ≤ k2}
▷ f(A) is a “sparse Frobenius norm”: ℓ2 norm of the largest k2 entries

in d2 time

[DKKPS19] I. Diakonikolas, D. Kane, S. Karmalkar, E. Price, A. Stewart. Outlier-Robust Sparse Estimation... NeurIPS. 2019



21/30

Towards practical algorithms
∥A∥op,k := supv:sparse |v⊤Av|

▶ More practical certificates for the sparse operator norm?

▶ We want a practical function f(·):
▷ ∥A∥op,k ≤ f(A)

▷ f(Σ− I) is bounded for clean data and all large subsets (stability)

▶ Suppose f(A) = supB∈B⟨B,A⟩.

▶ Desirable properties of B:
▷ sparsity-aware
▷ practical to search for B∗

▷ (For stability) For all B in B, x⊤Bx has bdd. variance

for gaussians

▶ [DKKPS19]: B := {B : ∥B∥Fr = 1, ∥B∥0 ≤ k2}
▷ f(A) is a “sparse Frobenius norm”: ℓ2 norm of the largest k2 entries

in d2 time

[DKKPS19] I. Diakonikolas, D. Kane, S. Karmalkar, E. Price, A. Stewart. Outlier-Robust Sparse Estimation... NeurIPS. 2019



21/30

Towards practical algorithms
∥A∥op,k := supv:sparse |v⊤Av|

▶ More practical certificates for the sparse operator norm?

▶ We want a practical function f(·):
▷ ∥A∥op,k ≤ f(A)

▷ f(Σ− I) is bounded for clean data and all large subsets (stability)

▶ Suppose f(A) = supB∈B⟨B,A⟩.

▶ Desirable properties of B:
▷ sparsity-aware
▷ practical to search for B∗

▷ (For stability) For all B in B, x⊤Bx has bdd. variance

for gaussians

▶ [DKKPS19]: B := {B : ∥B∥Fr = 1, ∥B∥0 ≤ k2}
▷ f(A) is a “sparse Frobenius norm”: ℓ2 norm of the largest k2 entries

in d2 time

[DKKPS19] I. Diakonikolas, D. Kane, S. Karmalkar, E. Price, A. Stewart. Outlier-Robust Sparse Estimation... NeurIPS. 2019



21/30

Towards practical algorithms
∥A∥op,k := supv:sparse |v⊤Av|

▶ More practical certificates for the sparse operator norm?

▶ We want a practical function f(·):
▷ ∥A∥op,k ≤ f(A)

▷ f(Σ− I) is bounded for clean data and all large subsets (stability)

▶ Suppose f(A) = supB∈B⟨B,A⟩.

▶ Desirable properties of B:
▷ sparsity-aware
▷ practical to search for B∗

▷ (For stability) For all B in B, x⊤Bx has bdd. variance

for gaussians

▶ [DKKPS19]: B := {B : ∥B∥Fr = 1, ∥B∥0 ≤ k2}
▷ f(A) is a “sparse Frobenius norm”: ℓ2 norm of the largest k2 entries

in d2 time

[DKKPS19] I. Diakonikolas, D. Kane, S. Karmalkar, E. Price, A. Stewart. Outlier-Robust Sparse Estimation... NeurIPS. 2019



21/30

Towards practical algorithms
∥A∥op,k := supv:sparse |v⊤Av|

▶ More practical certificates for the sparse operator norm?

▶ We want a practical function f(·):
▷ ∥A∥op,k ≤ f(A)

▷ f(Σ− I) is bounded for clean data and all large subsets (stability)

▶ Suppose f(A) = supB∈B⟨B,A⟩.

▶ Desirable properties of B:
▷ sparsity-aware
▷ practical to search for B∗

▷ (For stability) For all B in B, x⊤Bx has bdd. variance for gaussians

▶ [DKKPS19]: B := {B : ∥B∥Fr = 1, ∥B∥0 ≤ k2}
▷ f(A) is a “sparse Frobenius norm”: ℓ2 norm of the largest k2 entries

in d2 time

[DKKPS19] I. Diakonikolas, D. Kane, S. Karmalkar, E. Price, A. Stewart. Outlier-Robust Sparse Estimation... NeurIPS. 2019



22/30

A practical algorithm using sparse Frobenius norm

Theorem: [DKKPS19]

Given n ϵ-contaminated samples from N (µ, I) with k-sparse mean µ,
a practical algorithm to compute µ̂ such that w.h.p.,

▶ (sample complexity) n = Õ
(
k2

ϵ2

)
samples

▶ (error) ∥µ̂− µ∥2 = Õ(ϵ)

▶ (runtime) d2 · poly(k, 1/ϵ)

▶ Near-optimal asymptotic error, computational sample complexity
▶ Open questions:

▷ Beyond Gaussians? Even, all (isotropic) subgaussian distributions?

▷ Beyond isotropy? Say, unknown covariance Gaussians

[DKKPS19] I. Diakonikolas, D. Kane, S. Karmalkar, E. Price, A. Stewart. Outlier-Robust Sparse Estimation... NeurIPS. 2019
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▶ (runtime) d2 · poly(k, 1/ϵ)

▶ Near-optimal asymptotic error, computational sample complexity
▶ Open questions:

▷ Beyond Gaussians? Even, all (isotropic) subgaussian distributions?

▷ Beyond isotropy? Say, unknown covariance Gaussians

[DKKPS19] I. Diakonikolas, D. Kane, S. Karmalkar, E. Price, A. Stewart. Outlier-Robust Sparse Estimation... NeurIPS. 2019



22/30

A practical algorithm using sparse Frobenius norm

Theorem: [DKKPS19]

Given n ϵ-contaminated samples from N (µ, I) with k-sparse mean µ,
a practical algorithm to compute µ̂ such that w.h.p.,

▶ (sample complexity) n = Õ
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Quest for faster algorithms

▶ Input size: nd, where n is the sample complexity

▷ Ideal runtime Õ (nd)

▷ Possible for dense estimation: [CDG19; DL22; DHL19; CMY20; DKKLT22; DKPP22]

▶ (Slightly) relaxed goal: d · poly(n) time and n = poly(k/ϵ)

▶ Challenges:

▷ Analog of power iteration for sparse eigenvectors?

▷ In fact, existing approaches need explicit Σ

A linear-time algorithm for robust sparse estimation?
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Quest for faster algorithms

▶ Input size: nd, where n is the sample complexity

▷ Ideal runtime Õ (nd)

▷ Possible for dense estimation: [CDG19; DL22; DHL19; CMY20; DKKLT22; DKPP22]

▶ (Slightly) relaxed goal: d · poly(n) time and n = poly(k/ϵ)

▶ Challenges:

▷ Analog of power iteration for sparse eigenvectors?

▷ In fact, existing approaches need explicit Σ

A subquadratic-time algorithm for robust sparse estimation?
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A subquadratic-time algorithm

Theorem: [P24]

Given ϵ-contaminated samples from N (µ, I) on Rd with k-sparse µ

and a natural number q, there is an algorithm to compute µ̂:

▶ (error) ∥µ̂− µ∥2 = Õ(ϵ)

▶ (runtime) d1.6+
1
q · poly(n)

▶ (sample complexity) n = poly(kq, 1/ϵq, log d) samples

▶ Near-optimal asymptotic error

▶ Subquadratic for any q ≥ 3
▶ Open questions:

▷ k2 sample complexity
▷ linear time
▷ a wider family of distributions (same as [DKKPS19])

[Pen24] A. Pensia. A Sub-Quadratic Time Algorithm for Robust Sparse Mean Estimation. ICML. 2024
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Proof idea: Algorithm blueprint
∥A∥Fr,k2 := ℓ2 norm of largest k2 entries of A

Algorithmic template from [DKKPS19].
1. While ∥Σ− I∥Fr,k2 large:

1.1 Filter points and update Σ

2. Return HardThresh(sample mean)
Takes d2 time

▶ Key challenge: off-diagonal correlated coordinates
▶ H := {(i, j) : i ̸= j , |Σi,j | ≫ 1/k}
▶ First observation: Coordinates in H∁ are nice

▷ ∥(Σ− I)H∁∥Fr,k2 ≤
√
k2 · 1k = O(1)

How to find H in subquadratic time?

Strongly correlated coordinates

[DKKPS19] I. Diakonikolas, D. Kane, S. Karmalkar, E. Price, A. Stewart. Outlier-Robust Sparse Estimation... NeurIPS. 2019
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Connections to correlation detection
H := {(i, j) : i ̸= j , |Σi,j | ≫ ρ}

Definition: Two vectors x, y ∈ Rn are ρ-correlated if
∣∣〈 x

∥x∥2 ,
y

∥y∥2

〉∣∣ ≥ ρ

Problem statement. Correlation detection

with margin

Input: ▶ vectors y1, . . . , yd ∈ Rn; n≪ d

▶ a threshold ρ ∈ (0, 1)

, a threshold τ ≪ ρ

▶ very few, say o(d) out of d2 pairs, are τ -correlated

Output: all ρ-correlated pairs (i, j) ∈ [d]× [d]

▶ Naïve algorithm: try all possible pairs, runs in d2 time

▷ Likely to be optimal

▶ [Val15] gives an o(d2) algorithm if τ ≪ ρ

▷ runtime≈ d1.6+
1
q if τ = poly(ρq)
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Filtering using fast correlation detection
∥A∥Fr,k2 := ℓ2 norm of largest k2 entries of A

While ∥Σ− I∥Fr,k2 large:

Filter outliers

Algorithm outline.

1. H ← {(i, j) : |Σi,j | ≥ ρ} ρ = 1/k

2. J ← {(i, j) : |Σi,j | ≥ τ} τ = ρ100

3. While |H| ≫ poly(k):

▷ R← a set of d1.5 randomly sampled (i, j)

▷ Ĵ ← { (i, j) ∈ R : |Σi,j | ≥ τ }

▷ If |J | = o(d):

|Ĵ | = o(
√
d) :

▷ Use [Val15] to find H and filter
▷ Else

▷ ????

Filter using poly(1/τ) coordinates in R

How to calculate size of J

How to make progress when |J | large?
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▶ whp, Ω(
√
d) hits iff |J | = Ω(d)
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▷ Ĵ ← { (i, j) ∈ R : |Σi,j | ≥ τ }
▷ If |Ĵ | = o(
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Conclusion

▶ Today: robust sparse estimation through the lens of mean estimation
▶ What we didn’t discuss?

▷ Sparsity in other contexts: PCA, linear regression, covariance,. . .
▷ Privacy
▷ Information-computation tradeoffs

▶ Open questions:
▷ Similar progress on sparse PCA, linear regression,
▷ Custom SDP solvers for {M ⪰ 0; tr(M) = 1; ∥M∥1 ≤ k}
▷ Relaxing assumptions on data distributions
▷ Linear-time/Practical algorithms

Happy to chat more
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Thank You
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