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Background for this Talk

• The framework for proving SoS lower bounds on average case problems 
was pioneered by “A Nearly Tight Sum-of-Squares Lower Bound for the 
Planted Clique Problem” by Boaz Barak, Sam Hopkins, Jonathan Kelner, 
Pravesh Kothari, Ankur Moitra, and Aaron Potechin [BHKKMP16]. 

• This paper was a major inspiration for the low-degree polynomial 
framework for analyzing average case problems.

• Sam Hopkin’s PhD thesis [Hop18] is a very good reference for the material 
in this talk.
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Part I: Overview



Distinguishing/Hypothesis Testing Problems

• Distinguishing problems: Given a random distribution and a planted 
distribution, can we distinguish between these two distributions?

• Example: Planted Clique

• Random distribution: 𝐺 𝑛,
1

2

• Planted distribution: 𝐺 𝑛,
1

2
+ clique of size k

• Example: Non-Gaussian Component Analysis (NGCA)
• Random distribution: 𝑚 samples from 𝑁 0, 𝐼𝑑𝑛 .

• Planted distribution: First choose a random unit direction റ𝑣 ∈ 𝑅𝑛. Then take 
𝑚 samples which have some distribution 𝐴 in direction റ𝑣 and have 
distribution 𝑁 0,1 in directions orthogonal to റ𝑣 .



• Random instance: 𝐺 𝑛,
1

2

• Planted instance: 𝐺 𝑛,
1

2
+ 𝐾𝑘

• Example: Which graph has a planted 5-clique?
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Low-Degree Polynomial Framework

• Low-Degree Polynomial Framework: Is there a low-degree polynomial 𝑓 
which distinguishes between 𝐷𝑟𝑎𝑛𝑑𝑜𝑚 and 𝐷𝑝𝑙𝑎𝑛𝑡𝑒𝑑?

• More precisely, is there a low-degree polynomial 𝑓 such that 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑓  
is large, 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓 = 0, and 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓2 ≤ 1?

• If there is no such polynomial 𝑓 then we have a low-degree polynomial 
lower bound.



Sum of Squares (SoS) Framework

• The sum of squares hierarchy (SoS) is most naturally applied to 
certification problems (i.e., certifying that a random input does not 
have some hidden structure).

• That said, we can analyze distinguishing problems using the 
pseudo-calibration framework [BHKKMP16]:

1. Use pseudo-calibration to obtain pseudo-expectation values for the 
random inputs.

2. Construct the corresponding moment matrix 𝑀.
3. Analyze whether 𝑀 ≽ 0.

• If 𝑀 ≽ 0 w.h.p. then we have an SoS lower bound.

• More precisely, the pseudo-expectation valules ෨𝐸 will satisfy all 
low-degree constraints satisfied by the planted distribution.



Summary

Start with a random and planted distribution.

Show that there is no low-degree 
polynomial 𝑓 such that 

1. 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑓  is large

2. 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓 = 0 and 
𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓2 ≤ 1

Low-degree polynomial lower bound SoS lower bound

Use pseudo-calibration to obtain 
pseudo-expectation values ෨𝐸.

Construct the corresponding 
moment matrix 𝑀.

Show 𝑀 ≽ 0 w.h.p.



Low-Degree Conjecture

• Fact: SoS lower bound proved via pseudo-calibration (where ෨𝐸 1  is well-
behaved) ⇒ low-degree polynomial lower bound

• Low-degree conjecture (see [Hop18] and [HW21]): For symmetric 
distinguishing problems, if there is a low-degree polynomial lower bound 
then no polynomial time algorithm can solve a noisy version of the 
problem where we add some additional noise to the planted distribution.

• SoS version of the low-degree conjecture: For symmetric distinguishing 
problems, if there is a low-degree polynomial lower bound then there is 
an SoS lower bound for a noisy version of the problem where we add 
some additional noise to the planted distribution.



Part II: Analyzing Low-Degree Polynomials



Analyzing Low-Degree Polynomials

• Key question: Is there a low-degree polynomial 𝑓 such that 
𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑓  is large, 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓 = 0, and 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓2 ≤ 1?

• This can be analyzed using the low-degree likelihood ratio (see e.g. 
[Hop18], [KWB22]). We will instead give a direct analysis.



Fourier Analysis on Random Inputs

• Setup: Assume that we have
• A vector space of polynomials of the input entries.

• An inner product 𝑓, 𝑔 = 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑔 .

• An orthonormal basis of Fourier characters 𝜒𝐸  where 𝜒∅ = 1.

• Example: 𝐺 𝑛, 1/2
• We have the inner product 𝑓, 𝑔 = 𝐸𝐺∼𝐺(𝑛,1/2) 𝑓 𝐺 𝑔(𝐺) .

• We have the Fourier characters 𝜒𝐸 𝐺 = −1 |𝐸∖𝐸(𝐺)| = ς𝑒∈𝐸 𝜒 𝑒 (𝐺) where 
𝜒{𝑒}(𝐺) = 1 if 𝑒 ∈ 𝐸 𝐺  and −1 if 𝑒 ∉ 𝐸(𝐺).

• This is essentially Fourier analysis over the Boolean hypercube where we have a 
variable for each potential edge.



Choosing the Best Low-Degree Polynomial

• Let 𝑏𝐸 = 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑[𝜒𝐸]. Given a polynomial 𝑓 = σ𝐸 𝑐𝐸𝜒𝐸 , we have that
• 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑓 = σ𝐸 𝑏𝐸𝑐𝐸

• 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓 = 𝑐∅

• 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓2 = σ𝐸 𝑐𝐸
2

• Goal: Find the polynomial 𝑓 of degree at most 𝑑 which maximizes 
𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑[𝑓] subject to 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓 = 0 and 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓2 ≤ 1.

• Goal restatement: Maximize σ𝐸: 𝐸 ≤𝑑 𝑏𝐸𝑐𝐸  subject to 𝑐∅ = 0 and  
σ𝐸:0< 𝐸 ≤𝑑 𝑐𝐸

2 ≤ 1.



Choosing the Best Low-Degree Polynomial Continued

• Let 𝑏𝐸 = 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑[𝜒𝐸]. We want to maximize σ𝐸:0< 𝐸 ≤𝑑 𝑏𝐸𝑐𝐸  subject to 
σ𝐸:0< 𝐸 ≤𝑑 𝑐𝐸

2 ≤ 1.

• Claim: The maximum value of σ𝐸:0< 𝐸 ≤𝑑 𝑏𝐸𝑐𝐸  is σ𝐸:0< 𝐸 ≤𝑑 𝑏𝐸
2 which is 

achieved by taking 𝑐𝐸 =
𝑏𝐸

σ𝐸:0< 𝐸 ≤𝑑 𝑏𝐸
2
. 

• Proof: By Cauchy Schwarz, 

 σ𝐸:0< 𝐸 ≤𝑑 𝑏𝐸𝑐𝐸 ≤ σ𝐸:0< 𝐸 ≤𝑑 𝑏𝐸
2 σ𝐸:0< 𝐸 ≤𝑑 𝑐𝐸

2 ≤ σ𝐸:0< 𝐸 ≤𝑑 𝑏𝐸
2

• Taking 𝑐𝐸 =
𝑏𝐸

σ𝐸:0< 𝐸 ≤𝑑 𝑏𝐸
2
 gives σ𝐸:0< 𝐸 ≤𝑑 𝑏𝐸𝑐𝐸 = σ𝐸:0< 𝐸 ≤𝑑 𝑏𝐸

2.



Analyzing Low-Degree Polynomials Summary

• The polynomial 𝑓 of degree at most 𝑑 which maximizes 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑[𝑓] 
subject to 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓 = 0 and 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓2 ≤ 1 is 

 𝑓 =
σ𝐸:0< 𝐸 ≤𝑑 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸 𝜒𝐸

σ𝐸:0< 𝐸 ≤𝑑 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸
2

   which gives 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑓 = σ𝐸:0< 𝐸 ≤𝑑 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸
2

.

• If σ𝐸:0< 𝐸 ≤𝑑 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸
2

≫ 1 then degree 𝑑 polynomials can 
distinguish the random and planted  distributions. If 

σ𝐸:0< 𝐸 ≤𝑑 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸
2

 is 𝑜(1) then degree 𝑑 polynomials do not 
distinguish the random and planted distributions.



Example: Planted Clique

• For planted clique, we can take the following random and planted 
distributions1:
• Random distribution: 𝐺(𝑛, 1/2) 
• Planted distribution: 𝐺(𝑛, 1/2) plus a planted clique where we put each vertex in 

the planted clique independently with probability 𝑘/𝑛.

• We want to compute σ𝐸:0< 𝐸 ≤𝑑 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸
2

• Claim: 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸 =
𝑘

𝑛

|𝑉 𝐸 |
 where 𝑉(𝐸) is the set of endpoints of 

edges in 𝐸.

• Idea: For the planted distribution, if all of the vertices in 𝑉(𝐸) are in the 
planted clique then 𝜒𝐸 = 1. Otherwise, 𝐸 𝜒𝐸 = 0.

1Ideally, we’d like to use the planted distribution where the clique has size exactly 𝑘. We use this planted distribution 
to make the SoS lower bound analysis easier.



Low-Degree Analysis for Planted Clique

• We have that 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸 =
𝑘

𝑛

|𝑉 𝐸 |
 and we want to compute 

σ𝐸:0< 𝐸 ≤𝑑 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸
2

. 

• For each 𝑗 ∈ [2𝑑], there are at most 2𝑗2/2𝑛𝑗 different sets 𝐸 such that 
𝑉 𝐸 = 𝑗.

• σ𝐸:0< 𝐸 ≤𝑑 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸
2

≤ σ𝑗=1
2𝑑 2

𝑗2

2
𝑘2

𝑛

𝑗

≤ σ𝑗=1
2𝑑 2𝑑𝑘2

𝑛

𝑗

• This is 𝑜(1) as long as 𝑘 is 𝑜(𝑛
1

2
−

𝑑

2log(𝑛))



Part III: The Sum of Squares Hierarchy



Setup for the Sum of Squares Hierarchy

• This talk: We view the sum of squares hierarchy (SoS) as a proof system 
for determining whether or not a system of polynomial equations is 
feasible over the real numbers.

• Example: k-clique equations
• For all 𝑖 ∈ 𝑛 , 𝑥𝑖

2 = 𝑥𝑖.

• 𝑥𝑖𝑥𝑗 = 0 if {𝑖, 𝑗} ∉ 𝐸(𝐺).

• σ𝑖=1
𝑛 𝑥𝑖 = 𝑘.

• These equations are feasible precisely when 𝐺 contains a 𝑘-clique. If SoS 
can prove that these equations are infeasible then this certifies that 𝐺 
does not have a 𝑘-clique.



Positivstellensatz/Sum of Squares Proofs

• Given a system of polynomial equations {𝑠𝑖 = 0} over 𝑅, a degree 𝑑 
Positivstellenstz/sum of squares proof of infeasibility is an equality 
of the form −1 = σ𝑖 𝑓𝑖𝑠𝑖 + σ𝑗 𝑔𝑗

2 where
• For all 𝑖, deg 𝑓𝑖 + deg 𝑠𝑖 ≤ 𝑑.

• For all 𝑗, deg 𝑔𝑗 ≤ 𝑑/2.



Positivstellensatz/Sum of Squares Proof Example

• Consider the following system of polynomial equations 

   corresponding to the statement that 𝐶4 has a triangle:
1.  For all 𝑖 ∈ [4], 𝑥𝑖

2 − 𝑥𝑖 = 0.

2.  𝑥1𝑥3 = 0 and 𝑥2𝑥4 = 0.

3.  𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 − 3 = 0.

• A degree 2 Positivstellensatz/SoS proof of infeasibility is as follows:

 −1 = 𝑥1 + 𝑥3 − 1 2 + 𝑥2 + 𝑥4 − 1 2 − 2𝑥1𝑥3 − 2𝑥2𝑥4 − σ𝑖=1
4 𝑥𝑖

2 − 𝑥𝑖 + (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 − 3)

𝑥1 𝑥2

𝑥3𝑥4



Pseudo-expectation Values

• Given polynomial equalities 𝑠𝑖 = 0 , degree 𝑑 pseudo-expectation values 
are a linear map ෨𝐸 from polynomials of degree at most 𝑑 to 𝑅 such that:
•  ෨𝐸 1 = 1.
•  ෨𝐸 𝑓𝑠𝑖 = 0 whenever deg 𝑓 + deg 𝑠𝑖 ≤ 𝑑.

•  ෨𝐸 𝑔2 ≥ 0 whenever deg 𝑔 ≤ 𝑑/2.

• Proposition: We cannot have both degree 𝑑 pseudo-expectation values ෨𝐸 
and a degree 𝑑 SoS/Positivstellensatz proof of infeasibility.

• Proof: Assume we have both. Applying the degree 𝑑 pseudo-expectation 
values to the degree 𝑑 SoS/Positivstellensatz proof of infeasibility        
− 1 = σ𝑖 𝑓𝑖𝑠𝑖 + σ𝑗 𝑔𝑗

2 gives

  −1 = ෨𝐸 −1 = σ𝑖
෨𝐸 𝑓𝑖𝑠𝑖 + σ𝑗

෨𝐸[𝑔𝑗
2] ≥ 0 

   which gives a contradiction.



Example: Knapsack with Unit Weights and Capacity 𝑘

• Equations: We have a variable 𝑥𝑖 for each weight. We want that 𝑥𝑖 = 1 if 
we take weight 𝑖 and 𝑥𝑖 = 0 otherwise. We can capture this with the 
following equations:
•  For all 𝑖 ∈ [𝑛], 𝑥𝑖

2 = 𝑥𝑖.

•  σ𝑖=1
𝑛 𝑥𝑖 = 𝑘.

• These equations are infeasible whenever 𝑘 ∉ ℤ ∩ [0, 𝑛]. SoS is poor at 
capturing integrality arguments so SoS requires degree 2 min{𝑘, 𝑛 − 𝑘}  
to refute these equations [Gri01a].

• Degree 2 pseudo-expectation values for 𝑛 = 3, 𝑘 = 3/2: ෨𝐸 𝑥𝑖
2 =

෨𝐸 𝑥𝑖 = 1/2 for all 𝑖, ෨𝐸 𝑥𝑖𝑥𝑗 = 1/8 whenever 𝑖 ≠ 𝑗.



Checking the Pseudo-expectation Values

• Equations: 
•  For all 𝑖 ∈ [3], 𝑥𝑖

2 = 𝑥𝑖.

•  σ𝑖=1
3 𝑥𝑖 = 3/2.

• Pseudo-expectation values: ෨𝐸 𝑥𝑖
2 = ෨𝐸 𝑥𝑖 = 1/2 for all 𝑖, ෨𝐸 𝑥𝑖𝑥𝑗 = 1/8 

whenever 𝑖 ≠ 𝑗.

• We can check that the polynomial equalities are satisfied as follows:
•  ෨𝐸 𝑥1 + 𝑥2 + 𝑥3 = 1/2 + 1/2 + 1/2 = 3/2.

•  ෨𝐸 𝑥1
2 + 𝑥1𝑥2 + 𝑥1𝑥3 = 1/2 + 1/8 + 1/8 = 3/4 = (3/2) ෨𝐸[𝑥1].



The Moment Matrix

• To check that ෨𝐸 𝑔2 ≥ 0 whenever deg 𝑔 ≤ 𝑑/2, we can use the 
moment matrix 𝑀 whose rows and columns are indexed by monomials of 
degree at most 𝑑/2 with entries 𝑀𝑝𝑞 = ෨𝐸 𝑝𝑞 .

• Fact: ෨𝐸 𝑔2 ≥ 0 whenever deg 𝑔 ≤ 𝑑/2 ⟺ 𝑀 ≽ 0 (i.e., 𝑀 is positive 
semidefinite).



Checking 𝑀 ≽ 0

• Pseudo-expectation values: ෨𝐸 𝑥𝑖
2 = ෨𝐸 𝑥𝑖 = 1/2 for all 𝑖, ෨𝐸 𝑥𝑖𝑥𝑗 = 1/8 

whenever 𝑖 ≠ 𝑗.

• The corresponding moment matrix is 𝑀 =

1 1/2 1/2 1/2
1/2
1/2
1/2

1/2 1/8 1/8
1/8 1/2 1/8
1/8 1/8 1/2

. 

• To see that 𝑀 ≽ 0, observe that
1 1/2 1/2 1/2

1/2
1/2
1/2

1/2 1/8 1/8
1/8 1/2 1/8
1/8 1/8 1/2

=

1 1/2 1/2 1/2
1/2
1/2
1/2

1/4 1/4 1/4
1/4 1/4 1/4
1/4 1/4 1/4

+

0  0 0 0 
0
0
0

 1/4 −1/8 −1/8
−1/8  1/4 −1/8
−1/8 −1/8  1/4

.



SoS Lower Bounds

• Summary: To prove a degree 𝑑 SoS lower bound, we generally need to 
1. Construct candidate degree 𝑑 pseudo-expectation values ෨𝐸.

2. Show that ෨𝐸 gives valid degree 𝑑 pseudo-expectation values. The most difficult 
condition to check is that the moment matrix 𝑀 is PSD (positive semidefinite).



Part IV: Pseudo-calibration



Proving SoS Lower Bounds for Average-Case Problems

• How can we prove SoS lower bounds for average case problems?

• Key idea from [BHKKMP16]: To show that degree 𝑑 SoS fails to certify that 
no solution exists, show that degree 𝑑 SoS fails to distinguish between 

1. The random input distribution (where there is no solution w.h.p.).

2. A planted distribution which always has a solution.

• We can construct the pseudo-expectation values ෨𝐸 for the random input 
by using the planted distribution as a guide and using pseudo-calibration 
[BHKKMP16].



Pseudo-calibration

• Pseudo-calibration technique [BHKKMP16]: Construct ෨𝐸 so that for all 
low-degree tests, the behavior of ෨𝐸 on random inputs matches the 
behavior of actual solutions for the planted distribution.

• Pseudo-calibration equation: For all polynomials 𝑝 of degree at most 𝑑 
and all small 𝐸 (for an appropriate definition of small),

𝐸𝑟𝑎𝑛𝑑𝑜𝑚
෨𝐸 𝑝 𝜒𝐸 = 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑[𝑝𝜒𝐸]

• This implies that for all such 𝑝 and 𝐸, the Fourier coefficient ෨𝐸 𝑝 𝐸  is 
෨𝐸 𝑝 𝐸 = 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑[𝑝𝜒𝐸]. If we take the other Fourier coefficients to be 0, 
we have that ෨𝐸 𝑝 = σ𝑠𝑚𝑎𝑙𝑙 𝐸 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑝𝜒𝐸 𝜒𝐸.



Pseudo-calibration Example: Planted Clique

• Pseudo-calibration equation: ෨𝐸 𝑝 = σ𝑠𝑚𝑎𝑙𝑙 𝐸 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑝𝜒𝐸 𝜒𝐸  

• Planted clique distributions:
• Random distribution: 𝐺(𝑛, 1/2).

• Planted distribution: 𝐺(𝑛, 1/2) plus a planted clique where we put each vertex in 
the planted clique independently with probability 𝑘/𝑛.

• Definition: Define 𝑥𝑉 = ς𝑖∈𝑉 𝑥𝑖.

• Claim: 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑥𝑉𝜒𝐸 =
𝑘

𝑛

|𝑉∪𝑉(𝐸)|
 where 𝑉(𝐸) is the set of endpoints of 

edges in 𝐸.

• Pseudo-expectation values: ෨𝐸 𝑥𝑉 = σ𝐸: 𝑉∪𝑉 𝐸 ≤𝑡
𝑘

𝑛

|𝑉∪𝑉(𝐸)|
𝜒𝐸



Part V: Low-Degree Polynomial Lower 

Bound ⇔ 𝑉𝑎𝑟 ෨𝐸 1  is 𝑜(1)



Analyzing 𝑉𝑎𝑟 ෨𝐸[1]

• Using pseudo-calibration gives ෨𝐸 𝑝 = σ𝑠𝑚𝑎𝑙𝑙 𝐸 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑝𝜒𝐸 𝜒𝐸.

• Special case: ෨𝐸 1 = 1 + σ𝐸:𝐸 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙, 𝐸≠∅ 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸 𝜒𝐸.

• 𝑉𝑎𝑟 ෨𝐸 1 = 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 σ𝐸:𝐸 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙, 𝐸≠∅ 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸 𝜒𝐸  
2

=

𝐸𝑟𝑎𝑛𝑑𝑜𝑚 σ𝐸,𝐸′:𝐸,𝐸′ 𝑎𝑟𝑒 𝑠𝑚𝑎𝑙𝑙, 𝐸≠∅,𝐸′≠∅ 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸′ 𝜒𝐸𝜒𝐸′  

   = σ𝐸:𝐸 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙, 𝐸≠∅ 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝐸
2

.

• This is the same expression we analyzed for low-degree polynomials!

• Corollary: Low-Degree Polynomial Lower Bound ⇔ 𝑉𝑎𝑟 ෨𝐸 1  is 𝑜(1)



Low-Degree Polynomial Lower Bounds Versus SoS Lower Bounds

Low-degree polynomial 
lower bound ≽ 0

SoS lower bound



Summary

• SoS lower bounds proved via pseudo-calibration are strictly stronger 
than low-degree polynomial lower bounds as they involve analyzing the 
entire moment matrix.

• There are many interesting techniques involved in proving SoS lower 
bounds.

• That said, low-degree polynomials are an excellent heuristic for 
determining the computational threshold for where a problem is hard 
and it is much easier to prove low-degree polynomial lower bounds.



Part VI: Graph Matrices



Background on Graph Matrices

• Graph matrices are a type of matrix which is a key technical tool 
for analyzing SoS on average case problems. 

• Recently, graph matrices have been used to analyze power-sum 
decompositions of polynomials [BHKX22], to analyze the ellipsoid 
fitting conjecture [PTVW23, HKPX23], and to analyze a class of 
first-order iterative algorithms including belief propagation and 
approximate message passing [JP24].

• Currently, not that much is known about graph matrices except for 
rough norm bounds [AMP20, JPRTX21, RT23].

• The limiting distribution of the spectrum of the singular values as 
𝑛 → ∞ (i.e., an analogue of Wigner’s Semicircle Law) was 
determined for one family of graph matrices called multi-Z-shaped 
graph matrices [CP20, CP22].



Ribbons

• Definition: We define a ribbon to consist of a set of edges 𝐸(𝑅) together 
with distinguished tuples1 𝐴𝑅 and 𝐵𝑅 of elements in [𝑛]. We call 𝐴𝑅 and 𝐵𝑅 
the left and right sides of 𝑅.

• We take 𝑀𝑅  to be the matrix where 𝑀𝑅 𝐴𝑅 , 𝐵𝑅 = 𝜒𝐸 𝑅 (𝐺) and 
𝑀𝑅 𝐴′, 𝐵′ = 0 if 𝐴′ ≠ 𝐴𝑅 or 𝐵′ ≠ 𝐵𝑅.

• Example:

2 3

𝐴𝑅 𝐵𝑅

4 5

𝑅

1

2

4

3

5

𝐺

𝑀𝑅 2,4 , 3,5 = −1

1

2

4

3

5

𝐴𝑅 𝐵𝑅

In 𝐺

Not in 𝐺

1We take 𝐴 and 𝐵 to be tuples rather than sets for technical reasons. 



Shapes

• Definition: A shape 𝛼 consists of a graph 𝛼 with distinguished tuples of 
vertices 𝑈𝛼 and 𝑉𝛼  which we call the left and right sides of 𝛼.

• Definition: We say that a ribbon 𝑅 has shape 𝛼 if there is an injective 
map 𝜎: 𝑉 𝛼 → [𝑛] such that 𝜎 𝛼 = 𝑅. More precisely, 𝜎 𝑈𝛼 = 𝐴𝑅, 
𝜎 𝑉𝛼 = 𝐵𝑅, and 𝜎 𝐸 𝛼 = 𝐸(𝑅).

• Example:

2 3

𝐴𝑅 𝐵𝑅

4 5

𝑅

𝑢1 𝑣1

𝑈𝛼𝑍
𝑉𝛼𝑍

𝑢2 𝑣2

𝛼𝑍

has shape



Graph Matrices

• Recall: Given a ribbon 𝑅, 𝑀𝑅  is the matrix where 𝑀𝑅 𝐴, 𝐵 = 𝜒𝐸 𝑅 (𝐺) 
and 𝑀𝑅 𝐴′, 𝐵′ = 0 if 𝐴′ ≠ 𝐴 or 𝐵′ ≠ 𝐵.

• Definition: Given a shape 𝛼, the graph matrix 𝑀𝛼  is 

 𝑀𝛼 = σ𝑅𝑖𝑏𝑏𝑜𝑛𝑠 𝑅 𝑜𝑓 𝑠ℎ𝑎𝑝𝑒 𝛼 𝑀𝑅

• Equivalently, 𝑀𝛼 𝐴, 𝐵 =
1

𝐴𝑢𝑡 𝛼
σ 𝜎:𝑉 𝛼 →𝑉 𝐺 : 

𝜎 𝑖𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒,

𝜎 𝑈𝛼 =𝐴,𝜎 𝑉𝛼 =𝐵

𝜒𝜎 𝐸 𝛼 (𝐺) 

   where 𝐴𝑢𝑡 𝛼  is the set of automorphisms of 𝛼 which keep U𝛼 and 𝑉𝛼

   fixed.

• Note that 𝑀𝛼  is a 
𝑛!

𝑛− 𝑈𝛼 !
×

𝑛!

𝑛− 𝑉𝛼 !
 matrix with rows and columns 

indexed by tuples 𝐴 and 𝐵 of |𝑈𝛼| and |𝑉𝛼| elements respectively.



Example: Z-Shaped Graph Matrix

• 𝑀𝛼𝑍
= σ𝑅𝑖𝑏𝑏𝑜𝑛𝑠 𝑅 𝑤𝑖𝑡ℎ 𝑠ℎ𝑎𝑝𝑒 𝛼𝑍

𝑀𝑅.

• 𝑀𝛼𝑍
𝐴, 𝐵 = σ 𝜎:𝑉 𝛼𝑍 →𝑉 𝐺 : 

𝜎 𝑖𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒,

𝜎 𝑈𝛼𝑍
=𝐴,𝜎 𝑉𝛼𝑍

=𝐵

𝜒𝜎 𝐸 𝛼𝑍
(𝐺).

𝑢1 𝑣1

𝑈𝛼𝑍
𝑉𝛼𝑍

𝑢2 𝑣2

𝛼𝑍

1

2

4

3

5

𝐺

𝑀𝛼𝑍
1,2 , 3,4 = 1

1

2

4

3

5

𝐴

𝐵

𝑀𝛼𝑍
2,4 , 3,5 = −1

1

2

4

3

5

𝐴 𝐵

In 𝐺

Not in 𝐺

Some entries of 𝑀𝛼𝑍
 

for a given input 
graph 𝐺:



More Graph Matrix Examples

• Graph matrix examples (for these examples, 𝑉 𝛼 = 𝑈𝛼 ∪ 𝑉𝛼):
1. If 𝛼 is the shape with 𝑈𝛼 = 𝑢1 , 𝑉𝛼 = 𝑣1 , and 𝐸 𝛼 = 𝑢1, 𝑣1  then 𝑀𝛼 is 

a symmetric random matrix with ±1 entries and 0s on the diagonal.

2. If 𝛼 is the shape with 𝑈𝛼 = 𝑢1 , 𝑉𝛼 = 𝑣1 , and 𝐸 𝛼 = {} then 𝑀𝛼 = 𝐽 − 𝐼𝑑 
where 𝐽 is the all ones matrix.

3. If 𝛼 is the shape with 𝑈𝛼 = 𝑉𝛼 = 𝑢1 , and 𝐸 𝛼 = {} then 𝑀𝛼 = 𝐼𝑑

0 ±1
±1 0

±1 ±1
±1 ±1

±1 ±1
±1 ±1

0 ±1
±1 0

𝑢1 𝑣1

𝑈𝛼 𝑉𝛼

0 1
1 0

1 1
1 1

1 1
1 1

0 1
1 0

𝑢1 𝑣1

𝑈𝛼 𝑉𝛼𝛼 𝛼

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

𝑢1

𝑈𝛼 = 𝑉𝛼

𝛼



Example: Decomposing a Clique Indicator Matrix

• Let 𝑀 be the 𝑛 𝑛 − 1 × 𝑛(𝑛 − 1) clique indicator matrix with entries 
𝑀 𝑎, 𝑏 , 𝑐, 𝑑 = 1 if 𝑎, 𝑏, 𝑐, 𝑑  is a 4-clique and 0 otherwise.

• Using graph matrices, we can decompose the clique indicator 𝑀 as follows. 

   𝑀 =
1

26
σ𝛼:𝑈𝛼= 𝑢1,𝑢2 ,

𝑉𝛼= 𝑣1,𝑣2 , 

𝑉 𝛼 =𝑈𝛼∪𝑉𝛼

𝑀𝛼

• Idea: If 𝐴 ∪ 𝐵 is a 4-clique then for all of these shapes 𝛼, 𝑀𝛼 𝐴, 𝐵 = 1. If 
𝐴 ∪ 𝐵 is missing an edge then there is perfect cancellation between the 
shapes 𝛼 which have the corresponding edge and the shapes which do not.

𝑣1

𝑈𝛼

𝑢2

𝛼

𝑢1

𝑉𝛼

𝑣2



Graph Matrix Norm Bounds

• Theorem [AMP20]: For all shapes 𝛼 with no isolated vertices outside of 
𝑈𝛼 ∪ 𝑉𝛼, letting 𝑆𝛼  be a minimum vertex separator between 𝑈𝛼 and 𝑉𝛼, 

with high probability 𝑀𝛼  is ෨𝑂(𝑛
𝑉 𝛼 −|𝑆𝛼|

2 ).

• Examples: With high probability,

𝑢1 𝑣1

𝑈𝛼𝑍
𝑉𝛼𝑍

𝑢2 𝑣2

𝛼𝑍

𝑢1 𝑣1

𝑈𝛼𝑠𝑝𝑖𝑑𝑒𝑟 
𝑉𝛼𝑠𝑝𝑖𝑑𝑒𝑟

𝑢2 𝑣2

𝛼𝑠𝑝𝑖𝑑𝑒𝑟

𝑤1𝑀𝛼𝑍
 is ෨𝑂 𝑛

4−2

2 = ෨𝑂 𝑛 𝑀𝛼𝑠𝑝𝑖𝑑𝑒𝑟
 is ෨𝑂 𝑛

5−1

2 = ෨𝑂 𝑛2

One minimum vertex separator is shown in red.



Pseudo-calibration and Graph Matrices

• Graph matrices are a natural way to represent the moment matrix 𝑀 
given by pseudo-calibration.

• Recall: For planted clique, ෨𝐸 𝑥𝑉 = σ𝐸: 𝑉∪𝑉 𝐸 ≤𝑡
𝑘

𝑛

|𝑉∪𝑉(𝐸)|
𝜒𝐸

• Decomposition of the moment matrix 𝑀 using graph matrices: 

   𝑀 = σ𝛼: 𝐸 𝛼 ≤𝑡
𝑘

𝑛

|𝑉(𝛼)|
𝑀𝛼.

• ෨𝐸 1 = 1 + σ𝛼:𝑈𝛼=𝑉𝛼=∅, 0< 𝐸 𝛼 ≤𝑡
𝑘

𝑛

|𝑉(𝛼)|
𝑀𝛼.



Low-Degree Polynomial Lower Bound Picture

෨𝐸[1] = 1 +
𝑘

𝑛

2

+
𝑘

𝑛

3

+
𝑘

𝑛

3

+ ⋯

Rough analysis using graph matrices: For all 𝑗 ∈ [2𝑑], there are at most 

2𝑗2/2 shapes 𝛼 such that 𝑉(𝛼) = 𝑗 and 𝑈𝛼 = 𝑉𝛼 = ∅. With high 
probability, all of these terms have magnitude ෨𝑂(𝑛𝑗/2). 
Using a union bound, we obtain that with high probability, 

෨𝐸 1 − 1 ≤ σ𝑗=1
2𝑑 ෨𝑂

2𝑑𝑘

𝑛

𝑗

.

which is 𝑜(1) if 𝑘 ≪ 𝑛 



Partial Picture for 𝑀

𝑀 = ෨𝐸 1

+
𝑘

𝑛

4

+
𝑘

𝑛

5

+
𝑘

𝑛

4

+
𝑘

𝑛

2

+
𝑘

𝑛

2

+
𝑘

𝑛

3

+
𝑘

𝑛

3

+
𝑘

𝑛

+
𝑘

𝑛

3

+
𝑘

𝑛

3

+
𝑘

𝑛

2

+
𝑘

𝑛

3

+
𝑘

𝑛

4

+
𝑘

𝑛

4

+ ⋯

Note: Many terms 
are not shown 



Part VII: Current Sum of Squares Lower Bounds 
for Average Case Problems



Evidence for the Low-Degree Conjecture

• We have SoS lower bounds matching (up to lower order terms) the best 
known low-degree polynomial lower bounds for
• Planted clique [BHKKMP16].
• Random CSPs [KMOW17].
• Tensor PCA (principal component analysis) and sparse PCA [HKPRSS17, PR20]
• k-Coloring [KM21]
• Densest k-subgraph [JPRX23].
• Non-Gaussian Component Analysis [DKPP24] (SoS lower bounds for a special case 

were shown in [GJJPR20]).

• For independent set on sparse random graphs (i.e., 𝐺 𝑛, 𝑝  where 𝑝 is 
small), the distinguishing problem is easy but there are SoS lower bounds 
for certifying that 𝐺 𝑛, 𝑝  does not have a large independent set [JPRTX21, 
KPX24] and low-degree polynomial lower bounds for recovering the 
independent set [SW22].



Potential Improvements

• While we have made quite a bit of progress in understanding the 
performance of SoS on average case problems, there is still room for 
improvement. Some potential improvements are as follows.

1. The current machinery for SoS lower bounds has trouble handling global 
constraints. For example, the SoS lower bound for planted clique [BHKKMP16] 
does not satisfy the constraint that the clique has size exactly 𝑘. While Shuo 
Pang [Pang21] resolved this issue for planted clique, we currently don’t have 
general techniques for handling global constraints.

2. The current machinery for SoS lower bounds relies on the random input being 
a product distribution. We would like to have techniques for handling other 
random inputs such as random 𝑑-regular graphs.

3. For robust estimation problems, we often have indicators for whether a 
sample is corrupted. Our SoS lower bound for NGCA does not include this kind 
of indicator.



Potential Future SoS Lower Bounds for Average Case Problems

• Currently, the SoS lower bounds for k-coloring [KM21] allows each vertex 
to have multiple colors. We would like to prove an SoS lower bound for 
k-coloring where each vertex can only have one color.

• Recently, low-degree lower bounds have been proved for distinguishing 
between two planted distributions.
• For low-degree polynomials, counting the number of planted communities in a 

graph is as hard as recovering the communities [RSWY23]. 
• When 𝑛3/2 ≪ 𝑘 ≪ 𝑛^2, it is hard for low-degree polynomials to distinguish 

between an order 3 tensor of rank 𝑘 with random components where all 
components have coefficient 1 and an order 3 tensor of rank 𝑘 with random 
components where the first component has coefficient 1 + 𝛿 and the remaining 
components have coefficient 1 [Wein23].

• Proving SoS lower bounds for distinguishing between two planted 
distributions would be very interesting.



Some Open Problems

• Can we prove an SoS version of the low-degree conjecture or find natural 
average-case problems where SoS is significantly stronger than low-degree 
polynomials?

• Can we strengthen the machinery for proving SoS lower bounds to handle 
global constraints, non-product input distributions such as 𝐺 𝑛, 𝑝 , and/or 
indicator variables for whether we take samples?

• Can we prove SoS lower bounds for distinguishing between two planted 
distributions?

• Can we find a quiet planting for independent set on sparse random graphs?

• Can we prove an SoS lower bound for k-coloring where each vertex has 
exactly one color?



Thank You!
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Appendix: Intuition for the Low-Degree Conjecture



Example: Maximum Eigenvalue of a Random Matrix

• Q: Given a symmetric matrix 𝑀, is 𝜆𝑚𝑎𝑥 𝑀 ≥ 2 𝑛 + 2?

• Random distribution: A random symmetric 𝑛 × 𝑛 matrix 𝑀 with 
Gaussian entries

• Planted distribution:
1. Start with a random matrix 𝑀.

2. Letting 𝑣 be the eigenvector of 𝑀 with the largest eigenvalue, take 𝑀′ =

𝑀 + 2 𝑛 + 2 − 𝜆𝑚𝑎𝑥 𝑀 𝑣𝑣𝑇.

• Note: For a random symmetric 𝑛 × 𝑛 matrix 𝑀 with Gaussian entries, 

w.h.p. 𝜆𝑚𝑎𝑥(𝑀) is 2 𝑛 + 𝑂
1

𝑛1/6  and is described by the Tracy-

Widom distribution [TW94].



Example: Maximum Eigenvalue of a Random Matrix

• Q: Given a symmetric matrix 𝑀, is 𝜆𝑚𝑎𝑥 𝑀 ≥ 2 𝑛 + 2?

• By its nature, SoS easily solves this problem.

• For any symmetric matrix 𝑀, 𝜆𝑚𝑎𝑥 𝑀 𝐼𝑑 − 𝑀 ≽ 0 so 
xT 𝜆𝑚𝑎𝑥 𝑀 𝐼𝑑 − 𝑀 𝑥 is a sum of squares which certifies that for 
any vector 𝑥, 𝑥𝑇𝑀𝑥 ≤ 𝜆𝑚𝑎𝑥 𝑀 𝑥 2.

• However, since the planted distribution is only a slight tweak of the 
random distribution, this is very hard for low-degree polynomials to 
detect. 

• Note: This example is delicate. For example, if we instead ask whether 
𝜆𝑚𝑎𝑥 𝑀 ≥ 𝐶 𝑛 then low-degree polynomials can solve this problem 
via the trace power method.



Spectral Distinguishers

• Recall: A low-degree polynomial distinguisher is a polynomial f such that
1.  𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑓  is large.

2.  𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓 = 0 and 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓2 ≤ 1.

• A spectral distinguisher is a matrix 𝑄 such that such that
1.  Each entry of 𝑄 is a low-degree polynomial in the entries of the input.

2.  𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜆𝑚𝑎𝑥
+ (𝑄)  is large.

3.  𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝜆𝑚𝑎𝑥
+ 𝑄 ≤ 1.

   where 𝜆𝑚𝑎𝑥
+ (𝑄) is the largest positive eigenvalue of 𝑄 and is 0 if 𝑄 ≼ 0.

• [HKPRSS17]: If SoS succeeds at a noisy version of the distinguishing 
problem (and certain technical conditions are satisfied) then there is a 
spectral distinguisher.



Spectral Distinguisher Example

• For the maximum eigenvalue problem, we can take 
𝑄 = 𝐶 𝑀 − 2 𝑛 + 1 𝐼𝑑

• In the planted case, 𝜆𝑚𝑎𝑥 𝑀 ≥ 2 𝑛 + 2 so 𝜆𝑚𝑎𝑥
+ 𝑄 ≥ 𝐶.

• In the random case, w.h.p. 𝜆𝑚𝑎𝑥 𝑀 = 2 𝑛 + 𝑂
1

𝑛1/6  so 𝜆𝑚𝑎𝑥
+ 𝑄 = 0. 

Thus, 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝜆𝑚𝑎𝑥
+ 𝑄  is very small. 



Potential Path for Proving the Low-Degree Conjecture

• Likely strengthening of this result: If SoS solves a noisy version of the 
distinguishing problem then there is a matrix 𝑀 such that 

1.  Each entry of 𝑀 is a low-degree polynomial in the entries of the input.

2.  𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑀  is large.

3.  𝑃𝑟𝑎𝑛𝑑𝑜𝑚 𝑀 > 1  is very small.

• If so, then 𝑡𝑟 𝑀𝑀𝑇 𝑞
 is a low-degree distinguisher for 𝑞 = 𝑂(𝑙𝑜𝑔𝑛).
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