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Talk outline

• A gentle introduction to MMW
• Regret minimization
• Matrix analysis
• Implementation
• Relatives of MMW

• Robust statistics primitives via MMW
• Mean estimation
• A tour of applications
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• Robust statistics applications
• …Continuous Algorithms, Spring ‘25?
• Email me for pointers
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Linear regret minimization

Goal: sublinear regret Application 1: convex optimization

adaptive!

vanishing suboptimality gap!
+ works for cvx-ccv saddle point
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Linear regret minimization

Goal: sublinear regret Application 2: dual certificates

..if we choose gt, 
regret minimization 
algos certify bounds
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Examples: Application 2: dual certificates

Action set

Schatten q-norm ball

Spectraplex

von Neumann trace inequality:

achieved iff V = U up to permutation 
and subspace invariance



Linear regret minimization

Examples: Application 2: dual certificates

Action set

Schatten q-norm ball

Spectraplex

Upside:

Most SOTA fast robust stats 
algos based on this connection 
to regret minimization!
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Linear regret minimization

Examples: Application 3: SDP feasibility

Spectraplex

Regret minimization for 
approximate saddle point of:
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Different regularity:

RHS is 
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Conjugate of 
convex function

Maximizing 
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Mirror descent

gud
regularizer

sublinear 
regret

Gold standard 
(for 𝜀𝑇 regret over norm ball): 



Quantum entropy

Basic primitive: 
spectral bounds



Quantum entropy

Quantum (von 
Neumann) entropy



Quantum entropy

Checklist:
• Strongly convex?
• Bounded?
• Implementable?

C
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the trace norm
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Matrix multiplicative weights: mirror 
descent w.r.t. quantum entropy
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Gradients

Useful fact:
Why?

…von Neumann!
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Strong convexity

Useful fact: “Smoothness-strong 
convexity duality”

C
Why? 

Taylor expansion +
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Aside: “disentangling” lemma

Proof sketch:

is convex
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Dual smoothness

…so, entropy is strongly 
convex in Schatten-1!



Dual smoothness

“local norms” 
smoothness bound
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Implementation

Our action: need to 
“access” efficiently



Implementation
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quadratic form



Implementation
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Implementation

Degree ≈ 𝑅 Taylor approximation is high-accuracy



Implementation

Computable in “nearly-linear time”:



Implementation

…what good is one quadratic form?



Implementation

Key idea: reuse multiplies via sketching

(Q is any JL matrix)

(warning: independence)
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runtime:



Implementation

…at “test time”…
runtime:
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Improvement: runtime

cost for “implementing” 
each iteration

iteration 
count

[CDST19], see also [BBN13] for 
different SOTA tradeoff



Improvement: local norms

size of 
regularizer

“prediction error” 
per iteration, 

controlled by s.c.



Improvement: local norms

can drastically improve 
if Gt reacts to Xt
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Extension: Schatten-norm setups

globally 1-s.c. in 
Schatten-q norm

1-s.c. in Schatten-q
norm on unit ball

Who cares?
…better captures multiplicative (vs. additive)

…offers different tradeoffs (e.g. lower moment 
bounds)

C
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Extension: Positive SDP

Canonical application: 
feasibility SDP via saddle points

If all Ai are PSD or NSD, can get multiplicative error 
guarantees with no dependence on “width”

• Works at every scale
• Often the case in robust statistics! (Sample covariances)
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Robust mean estimation

C

Meta-algo

Else: 

Many fast ways of preserving saturation

empirical 
covariances

opnorm bounds
quadform access
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Robust mean estimation

(filter in each 
iteration)
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Robust mean estimation

Punchline

C

Interpretation:

MMW as a multi-
directional filter

…[DHL ‘19] Robust mean 
estimation in time Õ(𝑛𝑑)
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Relatives of MMW

as a potential

Upshot:
• Single-iteration progress (MMW non-monotone)
• Multifilter [DKKLT ‘22], list-decoding

• More natural interpretation?
• Power method [DKKP ‘23], PCA
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Relatives of MMW

as a potential

Downside(?)
• Less obvious connection to regret minimization
• Suggest: mirror descent as a catch-all
• Smarter filters for specific problem
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Relatives of MMW

Use case: local reweightings
(e.g. gradient descent)

Iterative methods: O(1) 
approx. is OK

[PSBR ‘18, CDG ’19, …]



Relatives of MMW

Very general strategy for stochastic 
optimization problems…

value = step size
dual = descent direction
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Relatives of MMW

“Fantope” = cvx hull of 
projection matrices

Multi-direction filters: 
list-decoding [DKKLT ‘21], optimal 
Huber contamination [DKPP ‘23] 



Relatives of MMW

e.g. solution to a 
packing SDP
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Relatives of MMW

Regret minimization: two-sided 
constraints

e.g. planted well-conditioning, 
semi-random linear models

[JLMSST ‘23]



Thank you!
Contact

kjtian.github.io
kjtian@cs.utexas.edu


