A Black-Box Transformation from Robustness to Privacy

Lydia Zakynthinou

UC Berkeley

Outline

- Definitions of Differential Privacy and Robustness
- Prior work (PTR)
- A black-box transformation from robust to DP algorithms
 - Implications
 - Applications
- Summary

Parameter Estimation

Population $p_{\theta^*} \in \mathcal{P}$,

$$\theta^* \in \Theta \subseteq \mathbb{R}^d$$

Sample $X = (X_1, ..., X_n)$

Parameter estimate $\hat{\theta}$

Accuracy goal :
$$\|\hat{\theta} - \theta^*\| \le \alpha$$
 w.p. $1 - \beta$

Differential Privacy: Do not leak too much information about the sample *X*.

[Dwork McSherry Nissim Smith 2006]

Robustness: Be accurate even under data corruptions or model misspecification.

[Tukey, Huber '60s]

Differential Privacy [Dwork McSherry Nissim Smith 2006]

Def. Algorithm $A_{priv}: \mathcal{X}^n \to \mathcal{W}$ is (ε, δ) -differentially private (DP) if for all datasets X, X' with Ham(X, X') = 1 and all measurable sets $W \subseteq \mathcal{W}$, $\Pr[A_{priv}(X) \in W] \leq e^{\varepsilon} \Pr[A_{priv}(X') \in W] + \delta$

Robustness

Def. Algorithm $A_{rob}: \mathcal{X}^n \to \mathcal{W}$ is η -robust with accuracy $\alpha(\eta)$ if given $X \sim p_{\theta^*}^n$, with high probability, for all X' differing on at most ηn points, $\|A_{rob}(X') - \theta^*\| \le \alpha(\eta)$.

History of connection between DP+Robustness

- [Dwork Lei 2009]: Propose-Test-Release (PTR)
- Lots of recent works had given private estimators "inspired" by robust ones
 [Bun Kamath Steinke Wu 2019], [Kamath Singhal Ullman 2020], [Ramsay
 Chenouri 2021], [Liu Kong Kakade Oh 2021], [Brown Gaboardi Smith
 Ullman Z 2021], [Liu Kong Oh 2022], [Hopkins Kamath Majid 2022], [Kothari
 Manurangsi Velingker 2022]

Very high-level: PTR [Dwork Lei 2009]

Release
$$f(X)$$
 + Laplace $\left(\frac{\Delta_f}{\varepsilon}\right)$.

f(X) good estimator of θ

Def.

Global Sensitivity of function $f: \mathcal{X}^n \to \mathbb{R}$:

$$\Delta_f = \max \{ |f(X) - f(X')| \text{ for } X, X' : \text{ } Ham(X, X') = 1 \}$$

Local Sensitivity of function $f: \mathcal{X}^n \to \mathbb{R}$ on dataset X:

$$\Delta_f(X) = \max \{ |f(X) - f(X')| \text{ for } X' : Ham(X, X') = 1 \}$$

But $\Delta_f \geq \Delta_f(X)$...

PTR: Why does robustness help privacy

Propose local sensitivity bound B.

Test Let
$$\gamma = \min_{X'} \{Ham(X, X') : \Delta_f(X') > B\}$$
. If $\gamma + \text{Laplace}\left(\frac{1}{\varepsilon}\right) \leq \frac{\log(1/\delta)}{\varepsilon}$, abort.

Release
$$\tilde{f}(X) = f(X) + \text{Laplace}\left(\frac{B}{\varepsilon}\right)$$
.

- ✓ Propose-Test-Release is (ε, δ) -DP.
- ✓ If it passes the test, it has error $|\tilde{f}(X) f(X)| \lesssim \frac{B}{\varepsilon}$.

PTR: Why does robustness help privacy

Propose local sensitivity bound B.

Test Let
$$\gamma = \min_{X'} \{Ham(X, X') : \Delta_f(X') > B\}$$
. If $\gamma + \text{Laplace}\left(\frac{1}{\varepsilon}\right) \leq \frac{\log(1/\delta)}{\varepsilon}$, abort.

Release
$$\tilde{f}(X) = f(X) + \text{Laplace}\left(\frac{B}{\varepsilon}\right)$$
.

Let's apply this to learning the Gaussian mean $\mathcal{N}(\theta^*, 1)$!

• First try: $f(X) = \frac{1}{n} \sum_{i \in [n]} X_i$. Then $\Delta_f(X) = \infty$ and $\gamma = 0$, even for $X \sim \mathcal{N}(\theta^*, 1)^n$.

PTR: Why does robustness help privacy

Propose local sensitivity bound B.

Test Let
$$\gamma = \min_{X'} \{Ham(X, X') : \Delta_f(X') > B\}$$
. If $\gamma + \text{Laplace}\left(\frac{1}{\varepsilon}\right) \leq \frac{\log(1/\delta)}{\varepsilon}$, abort.

Release
$$\tilde{f}(X) = f(X) + \text{Laplace}\left(\frac{B}{\varepsilon}\right)$$
.

• Better: Choose f(X) to be an η -robust estimator of θ^* with accuracy $\alpha(\eta) = \eta + \frac{1}{\sqrt{n}}$. Set $B = O\left(\alpha(\eta^*)\right)$ for $\eta^* n \approx \frac{\log(1/\delta\beta)}{\varepsilon} + 1$. If $X \sim \mathcal{N}(\theta^*, 1)^n$ then whp $\Delta_f(X') \leq O\left(\alpha(\eta^*)\right) = B$ and we will pass the test with overall error $O\left(\frac{1}{\varepsilon^2 n} + \frac{1}{\varepsilon\sqrt{n}}\right)$

History of connection between DP+Robustness

Can we always transform robust estimators to DP ones?

- [Dwork Lei 2009]: Can be used as a black-box transformation from robust to (ε, δ) -DP but it incurs extra factors.
- [Nissim Raskhodnikova Smith 2007] Smooth sensitivity: Also incurs extra factors.
- [Liu Kong Oh 2022]: Framework which gives statistically optimal estimators for many tasks under (ε, δ) -DP via generalization of Restricted Exponential Mechanism ([Brown Gaboardi Smith Ullman **Z** 2021] used REM with Tukey depth as a score function) but not black-box.

[Asi Ullman **Z** 2023], [Hopkins Kamath Majid Narayanan 2023]: A black-box transformation from any robust to a DP algorithm with optimal rates for several canonical tasks.

Outline

- Definitions of Differential Privacy and Robustness
- Prior Work (PTR)
- A black-box transformation from robust to DP algorithms
 - Implications
 - Applications
- Summary

A black-box transformation: Robust-Private

Theorem [Asi Ullman Z 2023]

Let $\varepsilon, \eta_0, \beta \in (0,1), n \in \mathbb{N}$, distribution p_{θ^*} for $\theta^* \in \Theta \subseteq \mathcal{B}^d_{||\cdot||}(R)$. Let $A_{rob}: \mathcal{X}^n \to \Theta$ be an η -robust estimator of θ^* with accuracy $\alpha(\eta)$ wp $1 - \beta$. Let $\eta^* \geq \eta_0$ such that $\eta^* \approx \frac{d \log(R/\alpha(\eta_0)) + \log(1/\beta)}{\varepsilon n}$

Then there exists an ε -DP estimator A_{priv} of θ^* with accuracy $O(\alpha(\eta^*))$ wp $1 - O(\beta)$.

Theorem [Hopkins Kamath Majid Narayanan 2023]

Let $\varepsilon, \eta_0, \beta \in (0,1), n \in \mathbb{N}$, distribution p_{θ^*} for $\theta^* \in \Theta \subseteq \mathcal{B}^d_{\|\cdot\|}(R)$. Let $A_{rob}: \mathcal{X}^n \to \Theta$ be an η -robust estimator of θ^* with accuracy $\alpha(\eta)$ wp $1 - \beta$. Then there exists an ε -DP estimator A_{priv} of θ with accuracy $O(\alpha(\eta_0))$ wp $1 - O(\beta)$ as long as

$$n \gtrsim \max_{\eta^* \in [\eta_0, 1]} \frac{d \log \frac{2\alpha(\eta^*)}{\alpha(\eta_0)} + \log \frac{1}{\beta}}{\eta^* \varepsilon}$$

A black-box transformation : Robust→Private

Theorem [Asi Ullman Z 2023]

Let $\varepsilon, \eta_0, \beta \in (0,1), n \in \mathbb{N}$, distribution p_{θ^*} for $\theta^* \in \Theta \subseteq \mathcal{B}^d_{||\cdot||}(R)$. Let $A_{rob}: \mathcal{X}^n \to \Theta$ be an η -robust estimator of θ^* with accuracy $\alpha(\eta)$ wp $1-\beta$. Let $\eta^* \geq \eta_0$ such that $\eta^* \approx \frac{d \log(R/\alpha(\eta_0)) + \log(1/\beta)}{\varepsilon n}$

Then there exists an ε -DP estimator A_{priv} of θ^* with accuracy $O(\alpha(\eta^*))$ wp $1 - O(\beta)$.

Theorem [Hopkins Kamath Majid Narayanan 2023]

Let $\varepsilon, \eta_0, \beta \in (0,1), n \in \mathbb{N}$, distribution p_{θ^*} for $\theta^* \in \Theta \subseteq \mathcal{B}^d_{||\cdot||}(R)$. Let $A_{rob}: \mathcal{X}^n \to \Theta$ be an η -robust estimator of θ^* with accuracy $\alpha(\eta)$ wp $1-\beta$. Then there exists an ε -DP

estimator
$$A_{priv}$$
 of θ with accuracy $O(\alpha(\eta_0))$ wp $1 - O(\beta)$ as least

$$n \ge \frac{d + \log \frac{1}{\beta}}{\eta_0 \varepsilon} + \frac{d \log(R/\alpha(\eta_0))}{\varepsilon}$$

estimator
$$A_{priv}$$
 of θ with accuracy $O\left(\alpha(\eta_0)\right)$ wp $1-O(\beta)$ as I $\eta_0 = \alpha, \alpha(\eta) \left\{ = \frac{\alpha + \eta, \eta < 1/2}{R, \quad o.w.} \right\}$ $n \ge \frac{d + \log \frac{1}{\beta}}{\eta_0 \varepsilon} + \frac{d \log(R/\alpha(\eta_0))}{\varepsilon}$ $n \ge \max_{\eta^* \in [\eta_0, 1]} \frac{d \log \frac{2\alpha(\eta^*)}{\alpha(\eta_0)} + \log \frac{1}{\beta}}{\eta^* \varepsilon}$ $\Rightarrow n \ge \frac{d + \log \frac{1}{\beta}}{\alpha \varepsilon} + \frac{d \log R}{\varepsilon}$

$$\eta_0 = \alpha, \alpha(\eta) \left\{ = \frac{\alpha + \eta, \eta < 1/2}{R, \quad o. w.} \right\}$$

$$\Rightarrow n \ge \frac{d + \log \frac{1}{\beta}}{\alpha \varepsilon} + \frac{d \log R}{\varepsilon}$$

A black-box transformation: Robust-Private

Via the Inverse-Sensitivity mechanism $M_{Inv}^{\rho}(f;X)$ [Johnson Shmatikov 2013], [Asi Duchi 2020]

≡ Exponential mechanism [McSherry Talwar 2007] with the path-length score function

Exponential Mechanism [McSherry Talwar 2007]

Def. Given dataset X, score function $score: \Theta \times X^n \to \mathbb{R}$ with global sensitivity $\max_{\substack{\theta \ X,X': Ham(X,X')=1}} |score(\theta;X) - score(\theta,X')| \le 1$, the exponential mechanism returns θ with probability

$$\pi_X(\theta) = \frac{e^{-\varepsilon \cdot score(\theta;X)}}{\int_{\Theta} e^{-\varepsilon \cdot score(\xi;X)} d\xi}$$

0 score: good, high score: bad

- ✓ Satisfies ε -DP.
- ✓ Returns θ_{priv} with $score(\theta_{priv}; X) \le K$ with probability at least $1 e^{-\varepsilon K} \frac{\text{Vol}(\Theta)}{\text{Vol}(\{\theta: score(\theta; X) = 0\})}$

$$\begin{aligned} &\operatorname{Wp} \ 1 - \beta, \\ &\operatorname{score} \left(\theta_{priv}; X \right) \leq \\ &\frac{1}{\varepsilon} \left(\log \frac{\operatorname{Vol}(\Theta)}{\operatorname{Vol}(\{\theta \colon \operatorname{score}(\theta; X) = 0\})} + \log \frac{1}{\beta} \right) \end{aligned}$$

Points $\xi \in \Theta$ with low score are sampled whp

(Smooth) Inverse Sensitivity Mechanism [Asi Duchi 2020]

Def. Given function $f: \mathcal{X}^n \to \Theta$, dataset X, smoothness parameter ρ , $M_{Inv}^{\rho}(f; X)$ returns θ with probability

$$\pi_X(t) = \frac{e^{-\varepsilon \cdot len_f^{\rho}(\theta;X)}}{\int e^{-\varepsilon \cdot len_f^{\rho}(\xi;X)} d\xi},$$

where the score function is the smooth path-length

$$len_f^{\rho}(\theta; X) = \min_{X'} \{ Ham(X, X') : ||f(X') - \theta|| \le \rho \}$$

f(X)

(Smooth) Inverse Sensitivity Mechanism [Asi Duchi 2020]

Def. Given function $f: \mathcal{X}^n \to \Theta$, dataset X, smoothness parameter ρ , $M_{Inv}^{\rho}(f; X)$ returns θ with probability

$$\pi_X(t) = \frac{e^{-\varepsilon \cdot len_f^{\rho}(\theta;X)}}{\int e^{-\varepsilon \cdot len_f^{\rho}(\xi;X)} d\xi},$$

where the score function is the smooth path-length

$$len_f^{\rho}(\theta; X) = \min_{X'} \{ Ham(X, X') : ||f(X') - \theta|| \le \rho \}$$

✓ **Theorem** [Asi Duchi 2020]: If $f: X^n \to \mathcal{B}^d_{||\cdot||}(R+\rho)$ then $\forall X \in X^n$, with probability $1-\beta$, $\|M^\rho_{Inv}(f;X) - f(X)\| \le \omega_f(X;\eta^*) + \rho$, where $\omega_f(X;\eta^*) = \sup_{X'} \{\|f(X) - f(X')\| : Ham(X,X') \le \eta^* n\}$ and $\eta^* n \approx \frac{d \log_{\rho}^R + \log_{\beta}^1}{\varepsilon}$.

A black-box transformation : Robust→Private

[AUZ23, HKMN23] Black-Box Transformation: Sample a random $\theta_{priv} \in \Theta + \mathcal{B}^d_{||\cdot||}(\rho) \subseteq \mathcal{B}^d(R+\rho)$ with probability $\pi_{X}(\theta) \propto e^{-\varepsilon \cdot len_{f}^{\rho}(\theta;X)}$

where
$$f = A_{rob}$$
, $\rho = \alpha(\eta_0)$. Whp $\|\theta_{priv} - \theta^*\| = O(\alpha(\eta^*))$ for $\eta^* \approx \frac{d \log \frac{R}{\rho} + \log \frac{1}{\beta}}{\varepsilon n}$.

Proof.

- By [Asi Duchi 2020] : $\|\theta_{priv} A_{rob}(X)\| \le \omega_{A_{rob}}(X;\eta^*) + \alpha(\eta_0)$ for $\eta^* \approx \frac{d \log \frac{\kappa}{\rho} + \log \frac{1}{\beta}}{2}$.
- By robustness: $\omega_{A_{rob}}(X;\eta^*) \leq \sup_{X': Ham(X,X') \leq \eta^* n} \|A_{rob}(X) A_{rob}(X')\| \leq 2\alpha(\eta^*).$ Overall: $\|\theta_{priv} \theta^*\| \leq \|\theta_{priv} A_{rob}(X)\| + \|A_{rob}(X) \theta^*\| \leq 4\alpha(\eta^*)$ for $\eta^* \geq \eta_0$.

A black-box transformation: Robust-Private

Theorem [Asi Ullman **Z** 2023] [Hopkins Kamath Majid Narayanan 2023]

Let $\varepsilon, \eta_0, \beta \in (0,1), n \in \mathbb{N}$, distribution p_{θ^*} for $\theta^* \in \Theta \subseteq \mathcal{B}^d_{||\cdot||}(R)$. Let $A_{rob}: \mathcal{X}^n \to \Theta'$ be an η -robust estimator of θ^* with accuracy $\alpha(\eta)$ wp $1 - \beta$. Let $\eta^* \geq \eta_0$ such that $\eta^* \approx \frac{d \log(R/\alpha(\eta_0)) + \log(1/\beta)}{\varepsilon n}$

Then there exists an ε -DP estimator A_{priv} of θ^* with accuracy $O(\alpha(\eta^*))$ wp $1 - O(\beta)$.

Extend to (ε, δ) -DP using PTR and a *truncated* inverse-sensitivity mechanism.

Outline

- Definitions of Differential Privacy and Robustness
- Prior Work
- A black-box transformation from robust to DP algorithms
 - Implications
 - Applications
- Summary

Implications [AU**Z** '23]

1. ε -DP and $\frac{\log n}{\varepsilon n}$ - robustness are equivalent for low-dimensional tasks.

Theorem (informal). For low-dimensional tasks (d = O(1)), under (natural) assumptions (e.g., the non-private error is $\Omega(1/\text{poly}(n))$),

minimax error ε -DP \approx minimax error η -robustness for $\eta = \frac{\log n}{\varepsilon n}$.

Failure probabilities can be different $\propto 1/\text{poly}(n)$ and R.

Idea:
$$\alpha_{rob}^* \left(\eta = \frac{\log n}{\varepsilon n} \right) \le \alpha_{priv}^*(\varepsilon) \le \alpha_{rob}^* \left(\eta = \frac{d \log n}{\varepsilon n} \right)$$
[Dwork Lei 2009] [This work]

Implications [AUZ '23]

- 1. ε -DP and $\frac{\log n}{\varepsilon n}$ robustness are equivalent for low-dimensional tasks.
- 2. Our transformation is optimal for low-dimensional tasks.

Theorem (informal). For low-dimensional tasks (d = O(1)), there exists a robust algorithm to instantiate our transformation, such that the resulting private algorithm has **optimal minimax error up to constants**.

What about high-dimensional tasks?

Applications [HKMN & AUZ '23]

(Near) Optimal private estimators in high dimensions for many statistical tasks, e.g.:

- Gaussian mean estimation,
- Gaussian covariance estimation,
- (Sub)Gaussian PCA [new for ε-DP],
- Gaussian linear regression [new for ε -DP]
- Sparse Gaussian linear regression [new for ε -DP] (via a slightly modified transformation).

A drawback: the transformation is computationally inefficient in general.

Summary

- We give the first black-box transformation from robust to private estimators.
- We show that ε -privacy and $\frac{\log n}{\varepsilon n}$ -robustness are equivalent for low-dim tasks.
- We show that the transformation gives optimal estimators in low-dim.
- And it often gives optimal estimators in high dimensions, including new near-optimal results for PCA and (sparse) linear regression.
- We extend it to (ε, δ) -DP for $\tau \approx \frac{d + \log(1/\beta \delta)}{\varepsilon n}$, avoiding the dependence on R.

Summary

- In general, the transformation is computationally inefficient.
 - [Asi Duchi 2020] give approximations for special cases (PCA, LR).
 - Using Sum-of-Squares-based techniques (as in [Hopkins Kamath Majid 2022]), [Hopkins Kamath Majid Narayanan 2023] show that if the score function satisfies some properties, then the transformation can be implemented in polynomial time (e.g., for Gaussian estimation).
- The dependence on d, R is optimal in general (via lower bounds on applications). But it may be improved for special cases.
- When does the equivalence result hold for high dimensions?