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Parameter Estimation

Population py+ € P,
6* € ® € R4 Sample X = (X4, ..., X;,)

@,
‘ Parameter

) O, "
i.i.d. ' Algorithm A(X) estimate 6
n

Accuracy goal : ||§ — 6*|| < aw.p. 1-p
Differential Privacy: Do not leak too much Robustness: Be accurate even under data
information about the sample X. corruptions or model misspecification.

[Dwork McSherry Nissim Smith 2006] [Tukey, Huber ‘60s]

June 2024 New Frontiers in Robust Statistics, TTIC



Differential Privacy [Dwork McSherry Nissim Smith 2006]

Sample X = (X4, ..., X,)

®,
S, —)

5 Algorithm Ay, (X)
@,

Sample X' = (X3, ..., X;,)
S,
®, —)
e,

Algorithm A, (X")

§ # 0: “approx”

§ = 0: “pure”, € -DP

Def. Algorithm A,.;,: X™ - W is (¢, §)-differentially private (DP) if for all
datasets X, X' with Ham(X,X') = 1 and all measurable sets W < W,
Pr[A,i(X) € W] < ¥ Pr[Ap, (X)) EW]+ 6
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Robustness
Population pg+  Typical Sample X = (X, ..., Xp)

- ; B

.i.d. -
‘ Algorithm A, (X)
n

: ]

Corrupted Sample X' = (X1, X3, ..., X;,)

&
nn{ B

‘ Algorithm A, (X")
n

Def. Algorithm A,.,p: X™ — W is n-robust with accuracy «(n) if given X ~ pg-,
with high probability, for all X’ differing on at most nn points,
”Arob(X’) _ 9*” = a(ﬂ)-
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History of connection between DP+Robustness

« [Dwork Lei 2009]: Propose-Test-Release (PTR)

* Lots of recent works had given private estimators “inspired” by robust ones
[Bun Kamath Steinke Wu 2019], [Kamath Singhal Uliman 2020], [Ramsay
Chenouri 2021], [Liu Kong Kakade Oh 2021], [Brown Gaboardi Smith

Ullman Z 2021], [Liu Kong Oh 2022], [Hopkins Kamath Majid 2022], [Kothari
Manurangsi Velingker 2022]
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Very high-level: PTR [Dwork Lei 2009]

Af
Release f(X) + Laplace (?) f (X) good estimator of 6

Def.
Global Sensitivity of function f: X" - R :
Ar = max {|f(X) — f(X)| for X,X": Ham(X,X") = 1}

Local Sensitivity of function f: X™ — R on dataset X :
Ar(X) = max {|f(X) — f(X)| for X:Ham(X,X") = 1}
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PTR: Why does robustness help privacy

Propose local sensitivity bound B.

Test Lety = min{Ham(X, X"): A(X") > B}. If y + Laplace G) < 280/0)

,abort.

Release f(X) = f(X) + Laplace (B).

&E

v Propose-Test-Release is (g, §)-DP.
v If it passes the test, it has error [f(X) — f(X)| S g.
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PTR: Why does robustness help privacy

Propose local sensitivity bound B.

Test Lety = min{Ham(X, X"): A(X") > B}. If y + Laplace G) < 280/0)

,abort.

Release f(X) = f(X) + Laplace (B).

&E

Let’s apply this to learning the Gaussian mean NV (6%, 1)!

« Firsttry: f(X) = %Zie[n] X;. Then A¢(X) = o andy =0, even for X ~ N(6%, 1)".
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PTR: Why does robustness help privacy

Propose local sensitivity bound B.

TestLety = mln{Ham(X X"):Ar(X") > B} Ify + Laplace( ) < log(1/6)

abort.

Release f(X) = f(X) + Laplace (g)

« Better: Choose f(X) to be an n-robust estimator of 8* with accuracy

a(n) =n+ \/—% Set B = 0(a(n*)) forn*n ~ log(i/(sﬁ) + 1.
If X ~ NV(6*,1)™ then whp A¢(X") < 0(a(n*)) = B and we will pass the test

with overall error O ( + S\/_) &
“ 0(&(77*)) P

F&) fxX) Fxm
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History of connection between DP+Robustness

Can we always transform robust estimators to DP ones?

« [Dwork Lei 2009]: Can be used as a black-box transformation from robust
to (g, 6)-DP but it incurs extra factors.

* [Nissim Raskhodnikova Smith 2007] Smooth sensitivity: Also incurs extra
factors.

« [Liu Kong Oh 2022]: Framework which gives statistically optimal
estimators for many tasks under (&, 6)-DP via generalization of Restricted
Exponential Mechanism ([Brown Gaboardi Smith Ullman Z 2021] used
REM with Tukey depth as a score function) but not black-box.

[Asi Ullman Z 2023], [Hopkins Kamath Majid Narayanan 2023]:
A black-box transformation from any robust to a DP algorithm with
optimal rates for several canonical tasks.
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A black-box transformation : Robust—Private

Theorem
Let &,10, 8 € (0,1), n € N, distribution pg- for 6* € © € Bl | (R). Let Ayop: X™ - 0 be
an n-robust estimator of 6* with accuracy a(n) wp 1 — 3. Let n* > n, such that

_ dlog(R/a(mo)) + log(1/h)

en
Then there exists an ¢-DP estimator 4,,;, of 6* with accuracy 0(a(n*)) wp 1 — O(B).

Theorem

Let &,7, 8 € (0,1), n € N, distribution pg- for 6* € ® € Bff|(R). Let A;,p: X™ — 0 be
an n-robust estimator of 6* with accuracy a(n) wp 1 — . Then there exists an ¢-DP
estimator A,,;, of 6 with accuracy 0(a(n,)) wp 1 — O(,B) as long as

d logzal((77 )) + logﬁ
n < max o

1n*€[no,1] n'e




A black-box transformation : Robust—Private

Theorem
Let &,10, 8 € (0,1), n € N, distribution pg- for 6* € © € Bl | (R). Let Ayop: X™ - 0 be
an n-robust estimator of 6* with accuracy a(n) wp 1 — 3. Let n* > n, such that

_ dlog(R/a(mo)) + log(1/h)

EN
Then there exists an ¢-DP estimator A,,;, of 6* with accuracy O(a(n*)) wp 1 —0(B).

Theorem
Let &,7, 8 € (0,1), n € N, distribution pg- for 6* € ® € Bff|(R). Let A;,p: X™ — 0 be
an n-robust estimator of 6* with accuracy a(n) wp 1 — . Then there exists an ¢-DP

estimator A,,;, of 6 with accuracy 0(a(n,)) wp 1 — O(,B) asl _a+nn<1/2
1 Za(n ) No = a»“(’?) - R, 0. W.
- d +log , dlog(R/a(n,)) dlog——— 2 (o) + loglg d+ log% dlog R
No€ £ n < max > n > n
n*€[No,1] n*e ae €




A black-box transformation : Robust—Private

Via the Inverse-Sensitivity mechanism M/ _(f; X) [Johnson Shmatikov 2013],
[Asi Duchi 2020]

= Exponential mechanism [McSherry Talwar 2007] with the path-length score
function
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Exponential Mechanism

Def. Given dataset X, score function score: OxXX"™ — R with global sensitivity

max max |score(0; X) — score(0,X")| <1, the exponential mechanism
0 X X":Ham(XX")=1

returns 6 with probability

—&-score(0;X)

nx(0) = f@e—g-scor/e(E;X)df

~— 0 score: good, high score: bad

Satisfies ¢-DP.

Returns 6, with score(6,1,,; X) < K with probability at least 1 — e ¢ vol(®)

Vol({@: score(6;X)=0})

Wp 1-— ,Br
Score(Hpn-v;X) <

1 1
_ (log Vol(©) + log —> Points ¢ € O with low score are sampled whp

£ Vol({0: score(0;X) = 0}) p




(Smooth) Inverse Sensitivity Mechanism

Def. Given function f: X" — 0, dataset X, smoothness parameter p, M,pm,(f ; X)

returns 6 with probability
e—e-len]e(é?;X)

mx(t) = ,
fe—e-len?(E;X)dg

where the score function is the smooth path-length
leng (6;X) = min {Ham(X,X"):If (") = 6]l < p}

. f(X)
Points ||f(X") — 0| < p have score 1 = sampled whp
X’)

Points |[f(X) — 8] < p have score 0 = sampled whp



(Smooth) Inverse Sensitivity Mechanism

Def. Given function f: X" — 0, dataset X, smoothness parameter p, M,pm,(f ; X)

returns 6 with probability
e—e-len]e(é?;X)

mx(t) = ,
fe—s-len]e(f;x)dg

where the score function is the smooth path-length
leng (6;X) = min {Ham(X,X"):If (") = 6]l < p}

Theorem 2 X - Bﬁ.”(R + p) then VX € X", with probability 1 — g,
M, (f5 ) = FQO|| < wp (07 + p,

where w¢(X;n*) = sup{|[f(X) — f(X)|[: Ham(X,X") < n*n} and n*n =
X/

d logg +log%

&




A black-box transformation : Robust—Private

[AUZ23, HKMNZ23] Black-Box Transformation:
Sample a random 6,,,;, € © + Bf{,|(p) € B4(R + p) with probability

T[X(H) o e—s-len]e (6;X)

d logE +logl
= 0(a(n®)) for n* ~ o

where f = A,,p, p = a(ny). Whp ||9priv — 0"

&n

Proof.
. . d log% +log%
By : ||9priv — Arob(X)” < WA.op (X;1") + a(ny) forn* = J
By robustness: wy_, (X;7") < sup |A;0p (X) — Arop XD < 2a(n™).

X":Ham(X,X")<n*n

Overall: |8y — 0*|| < ||0priv — Arop || + 1Arop (X) — 0%l < 4a(n™) for n* = n,.




A black-box transformation : Robust—Private

Theorem
Let &,1o, 8 € (0,1), n € N, distribution pg- for 6* € © € B |(R). Let Ayop: X™ - 0’ be
an n-robust estimator of 6* with accuracy a(n) wp 1 — 3. Let n* > n, such that
. _dlog(R/a(ng)) +log(1/p)
(O En
Then there exists an ¢-DP estimator A,,.;;, of 68 with

curacy O(a(n*)) wp 1 — 0(B).

Extend to (&, 6)-DP using PTR and a truncated inverse-sensitivity mechanism.

Apyriy: €-DP estimator Replaced by d + log (%)
Sample X = Arob ! A, iv(X) has accurac
(X1, ey Xpp) n-robust estimator priv(X) y

~ o (LoBR/at)

&n

with accuracy a(n)
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Implications [AUZ ‘23]

logn

1. &-DP and - robustness are equivalent for low-dimensional tasks.

&n

Theorem (informal). For low-dimensional tasks (d = 0(1)), under (natural)
assumptions ( e.g., the non-private error is Q(1/poly(n)) ),

logn
en

minimax error e-DP =~ minimax error n-robustness for n =
Failure probabilities can be different « 1/poly(n) and R.

ok __logn * * _
Idea: a;,,, (77 = ) < Aprin(8) < Arpp (17 =
[Dwork Lei 2009] [This work]

d log n)
En



Implications [AUZ ‘23]

logn

1. &-DP and el robustness are equivalent for low-dimensional tasks.

2. Our transformation is optimal for low-dimensional tasks.

Theorem (informal). For low-dimensional tasks (d = 0(1)), there exists a
robust algorithm to instantiate our transformation, such that the resulting
private algorithm has optimal minimax error up to constants.

What about high-dimensional tasks?
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Applications [HKMN & AUZ ‘23]

(Near) Optimal private estimators in high dimensions for many statistical
tasks, e.qg.:

« (Gaussian mean estimation,

« (Gaussian covariance estimation,

* (Sub)Gaussian PCA [new for e-DP],

« Gaussian linear regression [new for e-DP]

« Sparse Gaussian linear regression [new for e-DP] (via a slightly modified

transformation).
/\I\/Iahbod will fix this next!

A drawback: the transformation is computationally inefficient in general.
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Summary

We give the first black-box transformation from robust to private

estimators.
logn

We show that e-privacy and

tasks.

We show that the transformation gives optimal estimators in low-dim.
And it often gives optimal estimators in high dimensions, including new
near-optimal results for PCA and (sparse) linear regression.

We extend it to (&, 8)-DP for 7 = d+1°g£§11/ﬁ5), avoiding the dependence on R.

- -robustness are equivalent for low-dim
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Summary

* In general, the transformation is computationally inefficient.

 |Asi Duchi 2020] give approximations for special cases (PCA, LR).

« Using Sum-of-Squares-based techniques (as in [Hopkins Kamath Majid
2022]), [Hopkins Kamath Majid Narayanan 2023] show that if the score
function satisfies some properties, then the transformation can be
implemented in polynomial time (e.g., for Gaussian estimation).

 The dependence on d, R is optimal in general (via lower bounds on
applications). But it may be improved for special cases.
« When does the equivalence result hold for high dimensions?
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