A Black-Box Transformation from Robustness to Privacy

Lydia Zakynthinou

UC Berkeley

Based on works by Hilal Asi, Jonathan Ullman, Z, Sam Hopkins, Gautam Kamath, Mahbod Majid, Shyam Narayanan

Outline

- Definitions of Differential Privacy and Robustness
- Prior work (PTR)
- A black-box transformation from robust to DP algorithms
	- Implications
	- Applications
- Summary

Parameter Estimation

$$
\text{Accuracy goal}: \|\hat{\theta} - \theta^*\| \le \alpha \text{ w.p. } 1 - \beta
$$

Differential Privacy: Do not leak too much information about the sample X .

[Dwork McSherry Nissim Smith 2006]

Robustness: Be accurate even under data corruptions or model misspecification. [Tukey, Huber '60s]

Differential Privacy *[Dwork McSherry Nissim Smith 2006]*

datasets X, X' with $Ham(X, X') = 1$ and all measurable sets $W \subseteq W$, $\Pr[A_{nriv}(X) \in W] \leq e^{\varepsilon} \Pr[A_{nriv}(X') \in W] + \delta$

Def. Algorithm $A_{rob}: \mathcal{X}^n \to \mathcal{W}$ is η -robust with accuracy $\alpha(\eta)$ if given $X \sim p_{\theta^*}^n$, with high probability, for all X' differing on at most ηn points, $||A_{\text{rob}}(X') - \theta^*|| \leq \alpha(\eta).$

History of connection between DP+Robustness

- [Dwork Lei 2009]: Propose-Test-Release (PTR)
- Lots of recent works had given private estimators "inspired" by robust ones [Bun Kamath Steinke Wu 2019], [Kamath Singhal Ullman 2020], [Ramsay Chenouri 2021], [Liu Kong Kakade Oh 2021], [Brown Gaboardi Smith Ullman **Z** 2021], [Liu Kong Oh 2022], [Hopkins Kamath Majid 2022], [Kothari Manurangsi Velingker 2022]

Very high-level: PTR [Dwork Lei 2009]

Release
$$
f(X)
$$
 + Laplace $\left(\frac{\Delta_f}{\varepsilon}\right)$. $f(X)$ good estimator of θ

Def.

Global Sensitivity of function $f: \mathcal{X}^n \to \mathbb{R}$: $\Delta_f = \max \{ |f(X) - f(X')| \text{ for } X, X' : \text{Ham}(X, X') = 1 \}$

Local Sensitivity of function $f: \mathcal{X}^n \to \mathbb{R}$ on dataset X : $\Delta_f(X) = \max \{ |f(X) - f(X')| \text{ for } X': Ham(X, X') = 1 \}$

But $\Delta_f \geq \Delta_f(X) \dots$

PTR: Why does robustness help privacy

Propose local sensitivity bound B .

Test Let
$$
\gamma = \min_{X'} \{ Ham(X, X') : \Delta_f(X') > B \}
$$
. If $\gamma + \text{Laplace} \left(\frac{1}{\varepsilon} \right) \le \frac{\log(1/\delta)}{\varepsilon}$, abort.
Release $\tilde{f}(X) = f(X) + \text{Laplace} \left(\frac{B}{\varepsilon} \right)$.

 \checkmark Propose-Test-Release is (ε, δ) -DP.

 \checkmark If it passes the test, it has error $|\tilde{f}(X) - f(X)| \lesssim \frac{B}{\epsilon}$ \mathcal{E} .

PTR: Why does robustness help privacy

Propose local sensitivity bound B .

Test Let
$$
\gamma = \min_{X'} \{ Ham(X, X') : \Delta_f(X') > B \}
$$
. If $\gamma + \text{Laplace} \left(\frac{1}{\varepsilon} \right) \le \frac{\log(1/\delta)}{\varepsilon}$, abort.
Release $\tilde{f}(X) = f(X) + \text{Laplace} \left(\frac{B}{\varepsilon} \right)$.

Let's apply this to learning the Gaussian mean $\mathcal{N}(\theta^*, 1)!$

• First try: $f(X) =$ $\frac{1}{n}\sum_{i\in [n]}X_i$. Then $\Delta_f(X)=\infty$ and $\gamma=0$, even for $X\sim \mathcal{N}(\theta^*,1)^n$.

PTR: Why does robustness help privacy

Propose local sensitivity bound B .

Test Let
$$
\gamma = \min_{X'} \{ Ham(X, X') : \Delta_f(X') > B \}
$$
. If $\gamma + \text{Laplace} \left(\frac{1}{\varepsilon} \right) \le \frac{\log(1/\delta)}{\varepsilon}$, abort.
Release $\tilde{f}(X) = f(X) + \text{Laplace} \left(\frac{B}{\varepsilon} \right)$.

June 2024 10 Better: Choose $f(X)$ to be an η -robust estimator of θ^* with accuracy $\alpha(\eta) = \eta + \frac{1}{\epsilon}$ \overline{n} . Set $B = O(\alpha(\eta^*))$ for $\eta^* n \approx \frac{\log(1/\delta \beta)}{2}$ \mathcal{E} + 1. If $X \sim \mathcal{N}(\theta^*, 1)^n$ then whp $\Delta_f(X') \le O(\alpha(\eta^*)) = B$ and we will pass the test with overall error $O\left(\frac{1}{\epsilon^2}\right)$ $\varepsilon^2 n$ $+\frac{1}{\sqrt{2}}$ $\varepsilon\sqrt{n}$ New Frontiers in Robust Statistics, TTIC $f(X)$ $f(X') f(X'')$ $\eta^* n - 1$ $\qquad \qquad$ 1 $O\bigl(\alpha(\eta^*)\bigr)$

History of connection between DP+Robustness

Can we always transform robust estimators to DP ones?

- [Dwork Lei 2009]: Can be used as a black-box transformation from robust to (ε, δ) -DP but it incurs extra factors.
- [Nissim Raskhodnikova Smith 2007] Smooth sensitivity: Also incurs extra factors.
- [Liu Kong Oh 2022]: Framework which gives statistically optimal estimators for many tasks under (ε, δ) -DP via generalization of Restricted Exponential Mechanism ([Brown Gaboardi Smith Ullman **Z** 2021] used REM with Tukey depth as a score function) but not black-box.

[Asi Ullman **Z** 2023], [Hopkins Kamath Majid Narayanan 2023]: A black-box transformation from any robust to a DP algorithm with optimal rates for several canonical tasks.

Outline

- Definitions of Differential Privacy and Robustness
- Prior Work (PTR)
- A black-box transformation from robust to DP algorithms
	- Implications
	- Applications
- Summary

Theorem [Asi Ullman **Z** 2023] Let ε , η_0 , $\beta \in (0,1)$, $n \in \mathbb{N}$, distribution p_{θ^*} for $\theta^* \in \Theta \subseteq \mathcal{B}_{||\cdot||}^d(R)$. Let $A_{rob}: \mathcal{X}^n \to \Theta$ be an η -robust estimator of θ^* with accuracy $\alpha(\eta)$ wp $1 - \beta$. Let $\eta^* \geq \eta_0$ such that $\eta^* \thickapprox$ $d \log(R/\alpha(\eta_0)) + \log(1/\beta)$ εn Then there exists an ε -DP estimator A_{priv} of θ^* with accuracy $O(\alpha(\eta^*))$ wp $1 - O(\beta)$. **Theorem** [Hopkins Kamath Majid Narayanan 2023] Let ε , η_0 , $\beta \in (0,1)$, $n \in \mathbb{N}$, distribution p_{θ^*} for $\theta^* \in \Theta \subseteq \mathcal{B}_{||\cdot||}^d(R)$. Let $A_{rob}: \mathcal{X}^n \to \Theta$ be an η -robust estimator of θ^* with accuracy $\alpha(\eta)$ wp $1 - \beta$. Then there exists an ε -DP estimator A_{priv} of θ with accuracy $O(\alpha(\eta_0))$ wp $1 - O(\beta)$ as long as $n \geq \max$ $\eta^* \overline{\epsilon} [\eta_0,1]$ d $\log \frac{2\alpha(\eta^*)}{\alpha(\eta^*)}$ $\overline{\alpha(\eta_0)}$ $+\log \frac{1}{2}$ $\overline{\beta}$ $\eta^*\varepsilon$

Theorem [Asi Ullman **Z** 2023] Let ε , η_0 , $\beta \in (0,1)$, $n \in \mathbb{N}$, distribution p_{θ^*} for $\theta^* \in \Theta \subseteq \mathcal{B}_{||\cdot||}^d(R)$. Let $A_{rob}: \mathcal{X}^n \to \Theta$ be an η -robust estimator of θ^* with accuracy $\alpha(\eta)$ wp $1 - \beta$. Let $\eta^* \geq \eta_0$ such that $\eta^* \thickapprox$ $d \log(R/\alpha(\eta_0)) + \log(1/\beta)$ εn Then there exists an ε -DP estimator A_{priv} of θ^* with accuracy $O(\alpha(\eta^*))$ wp $1 - O(\beta)$. **Theorem** [Hopkins Kamath Majid Narayanan 2023] Let ε , η_0 , $\beta \in (0,1)$, $n \in \mathbb{N}$, distribution p_{θ^*} for $\theta^* \in \Theta \subseteq \mathcal{B}_{||\cdot||}^d(R)$. Let $A_{rob}: \mathcal{X}^n \to \Theta$ be an η -robust estimator of θ^* with accuracy $\alpha(\eta)$ wp $1 - \beta$. Then there exists an ε -DP estimator A_{priv} of θ with accuracy $O\big(\alpha(\eta_0)\big)$ wp $1 - O(\beta)$ as long as $n \geq \max$ $\eta^* \overline{\epsilon} [\eta_0,1]$ d $\log \frac{2\alpha(\eta^*)}{\alpha(\eta^*)}$ $\overline{\alpha(\eta_0)}$ $+\log \frac{1}{2}$ $\overline{\beta}$ $\eta^*\varepsilon$ $\eta_0 = \alpha$, $\alpha(\eta)$ } = $\alpha + \eta$, $\eta < 1/2$ $R,$ $o.w.$ \Rightarrow n \geq $d + \log \frac{1}{\rho}$ $\overline{\beta}$ $\alpha\varepsilon$ + $d \log R$ $\mathcal{E}_{\mathcal{E}}$ $n \geq$ $d + \log \frac{1}{\rho}$ $\overline{\beta}$ η_0 ε + $d \log(R/\alpha(\eta_0))$ $\mathcal{E}_{\mathcal{E}}$

Via the Inverse-Sensitivity mechanism $M_{Inv}^{\rho}(f;X)$ [Johnson Shmatikov 2013], [Asi Duchi 2020]

≡ Exponential mechanism [McSherry Talwar 2007] with the path-length score function

Exponential Mechanism [McSherry Talwar 2007]

Def. Given dataset X, score function $score: \Theta \times \mathcal{X}^n \rightarrow \mathbb{R}$ with global sensitivity max $\ddot{\theta}$ max $X,X': Ham(X,X') = 1$ $score(\theta; X) - score(\theta, X') \leq 1$, the exponential mechanism returns θ with probability

$$
\pi_X(\theta) = \frac{e^{-\varepsilon \cdot score(\theta;X)}}{\int_{\Theta} e^{-\varepsilon \cdot score(\xi;X)} d\xi}
$$

0 score: good, high score: bad

Satisfies ε -DP.

 \checkmark Returns θ_{priv} with $score(\theta_{priv}; X) \le K$ with probability at least $1 - e^{-\varepsilon K} \frac{Vol(\Theta)}{Vol(\{\theta:score(\theta; X)=0\})}$

$$
\begin{aligned}\n\text{Wp 1} - \beta, & \text{score}(\theta_{priv}; X) \leq \\
& \frac{1}{\varepsilon} \left(\log \frac{Vol(\Theta)}{\text{Vol}(\{\theta: \text{score}(\theta; X) = 0\})} + \log \frac{1}{\beta} \right)\n\end{aligned}
$$

Points $\xi \in \Theta$ with low score are sampled whp

(Smooth) Inverse Sensitivity Mechanism [Asi Duchi 2020]

Def. Given function $f: \mathcal{X}^n \to \Theta$, dataset X, smoothness parameter ρ , $M_{Inv}^{\rho}(f; X)$ returns θ with probability

$$
\pi_X(t) = \frac{e^{-\varepsilon \cdot len_f^{\rho}(\theta;X)}}{\int e^{-\varepsilon \cdot len_f^{\rho}(\xi;X)}d\xi},
$$

where the score function is the smooth path-length $len_f^{\rho}(\theta; X) = \min_{X'} \{ Ham(X, X') : ||f(X') - \theta|| \le \rho \}$

(Smooth) Inverse Sensitivity Mechanism [Asi Duchi 2020]

Def. Given function $f: \mathcal{X}^n \to \Theta$, dataset X, smoothness parameter ρ , $M_{Inv}^{\rho}(f; X)$ returns θ with probability

$$
\pi_X(t) = \frac{e^{-\varepsilon \cdot len_f^{\rho}(\theta;X)}}{\int e^{-\varepsilon \cdot len_f^{\rho}(\xi;X)}d\xi},
$$

where the score function is the smooth path-length $len_f^{\rho}(\theta; X) = \min_{X'} \{ Ham(X, X') : ||f(X') - \theta|| \le \rho \}$

 \checkmark Theorem [Asi Duchi 2020]: If $f: \mathcal{X}^n \to \mathcal{B}_{||\cdot||}^d(R + \rho)$ then ∀X ∈ \mathcal{X}^n , with probability 1 – β , $M_{Inv}^{\rho}(f;X) - f(X)$ $\leq \omega_f(X; \eta^*) + \rho,$ where $\omega_f(X; \eta^*) = \sup$ $X^{\tilde{I}}$ $f(X) - f(X')$ ||: $Ham(X, X') \leq \eta^* n$ } and $\eta^* n \approx$ $\frac{d \log_{\rho}^{R} + \log_{\beta}^{1}}{\varepsilon}.$

[AU**Z**23, HKMN23] Black-Box Transformation: Sample a random $\theta_{priv} \in \Theta + \mathcal{B}_{||\cdot||}^d(\rho) \subseteq \mathcal{B}^d(R + \rho)$ with probability $\pi_X(\theta) \propto e^{-\varepsilon \cdot len_f^{\rho}(\theta;X)}$ where $f = A_{rob}$, $\rho = \alpha(\eta_0)$. Whp $||\theta_{priv} - \theta^*|| = O(\alpha(\eta^*))$ for $\eta^* \approx$ d \log^R ρ $+\log^1_2$ $\frac{\rho}{\varepsilon n}$.

Proof.

• By [Asi Duchi 2020]:
$$
\|\theta_{priv} - A_{rob}(X)\| \le \omega_{A_{rob}}(X; \eta^*) + \alpha(\eta_0)
$$
 for $\eta^* \approx \frac{d \log^R \theta + \log^1 \theta}{\epsilon n}$.

- By robustness: $\omega_{A_{rob}}(X; \eta^*) \leq \sup_{\mathcal{U} \in \mathcal{U}} \mathcal{U}$ $X': Ham(X, X') \leq \eta^* n$ $A_{rob}(X) - A_{rob}(X') || \leq 2\alpha(\eta^*).$
- Overall: $||\theta_{priv} \theta^*|| \le ||\theta_{priv} A_{rob}(X)|| + ||A_{rob}(X) \theta^*|| \le 4\alpha(\eta^*)$ for $\eta^* \ge \eta_0$.

Extend to (ε, δ) -DP using PTR and a *truncated* inverse-sensitivity mechanism. A_{rob} : $\overline{\eta}$ -robust estimator with accuracy $\alpha(\eta)$ \blacktriangleright $A_{priv}(X)$ has accuracy $\approx \alpha \left(\frac{d \log(R/\alpha(\eta_0))}{\alpha \eta_0}\right)$ ε n Sample $X =$ $\left(x_1, \ldots, x_n\right)$ $A_{priv}: \varepsilon$ -DP estimator Replaced by $d + \log \left(\frac{1}{\delta} \right)$ **Theorem** [Asi Ullman **Z** 2023] [Hopkins Kamath Majid Narayanan 2023] Let ε , η_0 , $\beta \in (0,1)$, $n \in \mathbb{N}$, distribution p_{θ^*} for $\theta^* \in \Theta \subseteq \mathcal{B}_{||\cdot||}^d(R)$. Let $A_{rob}: \mathcal{X}^n \to \Theta'$ be an η -robust estimator of θ^* with accuracy $\alpha(\eta)$ wp $1 - \beta$. Let $\eta^* \ge \eta_0$ such that $\eta^* \thickapprox$ $d \log(R/\alpha(\eta_0)) + \log(1/\beta)$ εn Then there exists an ε -DP estimator A_{priv} of θ^* with accuracy $O(\alpha(\eta^*))$ wp $1 - O(\beta)$.

Outline

- Definitions of Differential Privacy and Robustness
- Prior Work
- A black-box transformation from robust to DP algorithms
	- Implications
	- Applications
- Summary

Implications [AU**Z '**23]

1. ε -DP and $\frac{\log n}{m}$ $\frac{\partial g}{\partial n}$ - robustness are equivalent for low-dimensional tasks.

Theorem (informal). For low-dimensional tasks $(d = O(1))$, under (natural) assumptions (e.g., the non-private error is $\Omega(1/\text{poly}(n))$),

 m inimax error ε -DP \approx minimax error η -robustness for $\eta=$ log n $\frac{\nu g}{\varepsilon n}$.

Failure probabilities can be different $\propto 1/\text{poly}(n)$ and R.

Idea:
$$
\alpha^*_{rob} \left(\eta = \frac{\log n}{\varepsilon n} \right) \leq \alpha^*_{priv}(\varepsilon) \leq \alpha^*_{rob} \left(\eta = \frac{d \log n}{\varepsilon n} \right)
$$

[Dwork Lei 2009] [This work]

Implications [AU**Z '**23]

- 1. ε -DP and $\frac{\log n}{m}$ $\frac{\partial g}{\partial n}$ - robustness are equivalent for low-dimensional tasks.
- 2. Our transformation is optimal for low-dimensional tasks.

Theorem (informal). For low-dimensional tasks $(d = O(1))$, there exists a robust algorithm to instantiate our transformation, such that the resulting private algorithm has **optimal minimax error up to constants**.

What about high-dimensional tasks?

Applications [HKMN & AU**Z '**23]

(Near) Optimal private estimators in high dimensions for many statistical tasks, e.g.:

- Gaussian mean estimation,
- Gaussian covariance estimation,
- (Sub)Gaussian PCA [new for ε -DP],
- Gaussian linear regression [new for ε -DP]
- Sparse Gaussian linear regression [new for ε -DP] (via a slightly modified transformation).

Mahbod will fix this next!

A drawback: the transformation is computationally inefficient in general.

Summary

- We give the first black-box transformation from robust to private estimators.
- We show that ε -privacy and $\frac{\log n}{\cos n}$ $\frac{\partial g}{\partial n}$ -robustness are equivalent for low-dim tasks.
- We show that the transformation gives optimal estimators in low-dim.
- And it often gives optimal estimators in high dimensions, including new near-optimal results for PCA and (sparse) linear regression.
- We extend it to (ε, δ) -DP for $\tau \approx$ $d + \log(1/\beta\delta)$ $\frac{g(1/P\Omega)}{\varepsilon n}$, avoiding the dependence on R.

Summary

- In general, the transformation is computationally inefficient.
	- [Asi Duchi 2020] give approximations for special cases (PCA, LR).
	- Using Sum-of-Squares-based techniques (as in [Hopkins Kamath Majid 2022]), [Hopkins Kamath Majid Narayanan 2023] show that if the score function satisfies some properties, then the transformation can be implemented in polynomial time (e.g., for Gaussian estimation).
- The dependence on d, R is optimal in general (via lower bounds on applications). But it may be improved for special cases.
- When does the equivalence result hold for high dimensions?